

Physica C 282-287 (1997) 837-838

PHYSICA G

A New Series of Layered Pure Perovskites $(ACuO_{25})_2(ATiO_3)_m^{\dagger}$

Kenji D. Otzschi^{a, b}, Kenneth R. Poeppelmeier^{a, *}, Paul A. Salvador^c, Thomas O. Mason^c, Wharton Sinkler^c, Hong Zhang^c and Laurence D. Marks^c

^bDepartment of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA ^bInstitute for Solid State Physics, University of Tokyo, 7-22-1 Roppongi, Minato-ku, Tokyo 106, Japan ^bDepartment of Materials Science and Engineering, Northwestern University, 2137 Sheridan Road, Evanston, Illinois 60208-3108, USA

A new homologous series of layered "pure" perovskites $(ACuO_{2,5})_2(ATiO_3)_m (m = 2 \sim 4)$ was found. The distance between CuO₂ planes can be changed by simply changing the number of TiO₆ blocking layers. Among them, LaYCaBa₂Cu₂Ti₃O₁₄ is a potential new superconductor.

1. INTRODUCTION

Copper-oxygen (CuO₂) sheets, adequate hole/electron-doping levels and appropriate Cu-O distances have proven to be necessary conditions for high-T_s superconductivity. Over the last several years, our interests have been in the structural/electrical properties of the quadruple perovskites $Ln_2Ba_2Cu_2M_2O_{11}$ (M = Sn, Ti, $Ln_2 = La_2$ - Tb₂, LaY, NdDy), which have CuO₂ sheets separated by double MO₆ octahedra and can be carrier-doped by substitutions for the cations in the blocking layer [1]. Although the band structure and several features of the internal chemistry, including the amount of holes, are similar to known superconductors, the long in-plane Cu-O distances (>1.94Å) appear to inhibit superconductivity. Recently, we have discovered the m = 3 and 4 members of the layered "pure" perovskites, (ACuO₂₅)₂(ATiO₃)_m [2, 3, 4]. Among them, LaY CaBa, Cu, Ti, O14 has every property in order to show superconductivity.

2. EXPERIMENTAL SECTION

All samples were synthesized by usual solid

state reactions [4]. Powder XRD, TGA, magnetic susceptibility, HR-TEM and in-situ electrical conductivity/thermopower measurements were carried out as described before [1].

3. RESULTS AND DISCUSSION

The newly found perovskites , $Ln_2CaBa_2Cu_2$ -Ti₃O₁₄ and $Ln_2Ca_2Ba_2Cu_2Ti_4O_{17}$ form with a range of lanthanide ions, $Ln_2 = La_2 - Dy_2$, LaY - DyY and Ln_2 = $Pr_2 - Dy_2$, respectively. Along with the quadruple perovskites, $Ln_2Ba_2Cu_2Ti_2O_{11}$ ($Ln_2 = La_2 - Tb_2$, LaY, NdDy), they make a new family which has the generalized formula (ACuO₂₅)₂(ATiO₃)_m, where m =2 - 4.

In contrast to the many homologous series which have been reported for the intergrowth perovskites, this is the first example of a layeredcuprate "pure"-perovskite family. Whereas $Ln_2Ba_2Cu_2Ti_2O_{11}$ (m = 2) adopts a quadruple perovskite structure, $Ln_2CaBa_2Cu_2Ti_3O_{14}$ (m = 3) and $Ln_2Ca_2Ba_2Cu_2Ti_4O_{17}$ (m = 4) adopt a pentuple and sextuple *c*-axis-aligned perovskite structure, respectively [4]. In these structures, two, three or four sheets of TiO₆ octahedra comprise the blocking

[†] Supported by the NSF Science and Technology Center for Superconductivity under grant DMR 91-20000 (KDO, KRP, PAS, TOM, WS, HZ and LDM) and the Japan Society for the Promotion of Science for Young Scientists (KDO).

^{*} To whom all correspondence should be addressed.

Figure 1. Suggested structure of $LaYCaBa_2Cu_2$ Ti₃O₁₄.

layer and separate double planes of CuO₅ pyramids. Thus the inter-CuO₂ plane distance can be varied by the number ($m = 2 \sim 4$) of TiO₆ sheets in the blocking layer.

The general formula can also be written as $Ln_2Ba_2Cu_2Ti_2O_{11}(CaTiO_3)_n$ where n = 0 - 2, showing that the pentuple and sextuple perovskites are related by the addition of one or two CaTiO_3 units, respectively, to the quadruple perovskite. The addition of the smaller CaTiO_3 unit leads to Cu-O distances in the m = 3 and 4 phases which are substantially shorter than that in the quadruple perovskite (1.925Å in Tb_2Ca_2Ba_2Cu_2Ti_4O_{17}).

Substituting Y for Ln is also an effective way to shorten the in-plane Cu-O bond length. It also helps ordering so that LaY CaBa₂Cu₂Ti₃O₁₄ forms a tetragonal quintuple perovskite with the lattice parameters, a = 3.8675Å and c = 19.337Å (Figure 1, 2(a)), although its mother compound La₂CaBa₂Cu₂Ti₃O₁₄ has a cubic structure with a =3.9267Å.

Figure 2(b) shows a TEM image of the oxygen high-pressured (HIP treated) $Eu_2CaBa_2Cu_2Ti_3O_{14}$, which has a quintuple structure under ambient conditions [3]. Obviously, the layered structure is destroyed after treatment. Oxygen insertion between the CuO₂ planes is considered to be responsible. In LaYCaBa₂Cu₂Ti₃O₁₄, however, the small Y ions

Figure 2. TEM images of (a) LaYCaBa₂Cu₂-Ti₃O₁₄ and (b) Eu₂CaBa₂Cu₂-Ti₃O₁₄ (oxygen high-pressure treated (HIP)).

narrow the spacing between the CuO_2 planes which can prevent oxygen diffusion.

These results and observations make LaYCaBa₂Cu₂Ti₃O₁₄ an attractive candidate for a new superconductor.

4. REFERENCES

1. P. A. Salvador et al, to be published in J. Am. Chem. Soc. and references therein.

2. W. J. Zhu et al., Mat. Res. Bull, **30** (1995) 243 - 246.

3. P. A. Salvador et al., to be published in proceedings of the 1996 Materials Research Society Fall Meeting in Boston, Solid-State Chemistry of Inorganic Materials.

4. Kenji D. Otzschi et al., J. Am. Chem. Soc., 118 (1996) 8951 - 8952.