

Low-dimensional materials for high-efficiency/highpower nonlinear optical applications in the infrared

Mercouri Kanatzidis Northwestern University

Overarching goal

- Next generation of NLO crystals for IR
- Realize a deeper understanding of the relationship between crystal structure, dimensionality and difference frequency generation (DFG), especially in the IR region
- Transform the way high performance NLO materials are designed thereby accelerating future discoveries in the field and enabling associated technologies.
- Leverage the new insights to create a new generation of top performing NLO IR materials with wide optical gaps and high laser damage threshold (LDT).
- Train graduate students and postdocs in the art and science of NLO

Generation of new IR: difference frequency generation $(\omega_1 - \omega_2)$

Project objectives

- Synthesize highly pure chalcogenide materials with noncentrosymmetric structures and strong NLO response,
- Measure all fundamental NLO properties of the crystals
- Demonstrate crystal exhibit excellent wavelength tunability over a very broad IR range (~1 20 $\mu m)$
- Assess laser damage threshold of most promising materials and down-select to the top one of two best performing materials.
- Provide crystals to the AFRL Dayton group for further evaluation and feedback

Nonlinear optical phenomena

Taylor series expansion of the dielectric polarization density (electric dipole moment per unit volume) P(t) at time t in terms of the electric field E(t), $\chi^{(1)}$, $\chi^{(2)}$, $\chi^{(3)}$ susceptibilities of the medium

$$\mathbf{P}(t)=arepsilon_0(\chi^{(1)}\mathbf{E}(t)+\chi^{(2)}\mathbf{E}^2(t)+\chi^{(3)}\mathbf{E}^3(t)+\ldots),$$

where the coefficients $\chi^{(n)}$ are the *n*-th-order susceptibilities of the medium, and the presence of such a term is generally referred to as an *n*-th-order nonlinearity.

Only non-centrosymmetric crystals have $\chi^{(2)}$

 $\begin{array}{l} \underline{Generation \ of \ new \ UV}: \ second \ harmonic \ generation \ (2\omega_1) \\ \\ & sum \ frequency \ generation \ (\omega_1 + \omega_2) \\ \\ \underline{Generation \ of \ new \ IR}: \ difference \ frequency \ generation \ (\omega_1 - \omega_2) \end{array}$

Virtual 2-photon process

in a noncentrosymmetric medium

Overview Relating $\chi^{(2)}$ to bandgap E_q

Bandgaps of interest: E_g>1.7-2.0 eV

Our focus is on low-dimensional materials

- Theory predicts:
 - low-dimensional structures with polarizable elements (e.g. chalcogens: S, Se, Te) have higher joint density of states (JDOS) than corresponding threedimensional (3D) structures
 - Result: higher NLO optical responses.

JH Song, Arthur J. Freeman, TK Bera, I Chung, and MG Kanatzidis, Phys. Rev. B 79, 245203, (2009)

Polar crystals: $AAsQ_2$ (A = Li and Na; Q = S, Se)

Selenide Space group Space group Сс LiAsSe, Сс $P2_1/b$ γ-NaAsSe₂ Рс δ -NaAsSe₂ Pbca Сс β -Li_{0.2}Na_{0.8}AsSe₂ Сс γ -Li₀, Na₀, AsSe₂ Рс

Effect on NaAsSe₂ structure due to Li Substitution

Bera, T. K.; Jang, J. I.; Song, J. H.; Malliakas, C. D.; Freeman, A. J.; Ketterson, J. B.; Kanatzidis, M. G. *Journal of American Chemical Society* (2010) 132, 3484-3495

Noncentrosymmetric NaAsSe₂

Bera, T. K.; Jang, J. I.; Song, J. H.; Malliakas, C. D.; Freeman, A. J.; Ketterson, J. B.; Kanatzidis, M. G. *Journal of American Chemical Society* (**2010)** 132, 3484-3495

Northwestern

AAsS₂ and AAsSe₂: Very promising materials with strong SHG reported by our group

Song, Bera, Chung, Freeman, Kanatzidis, Phys. Rev. B., 79, 2009, 245203

$Li_{1-x}Na_xAsS_2$: Na addition reduces interchain $[AsS_2]^1$ interactions...

Li_{1-x}Na_xAsS₂: Na addition reduces interchain [AsS₂]¹⁻ interactions...

- The SHG intensity of powder $LiAsS_2$ is ~10 times larger than that of the benchmark $AgGaSe_2$ at 790 nm.
- The resulting Li_{0.6}Na_{0.4}AsS₂ is isostructural to LiAsS₂ and exhibits 30 times stronger SHG response than AgGaSe₂, a large enhancement over LiAsS₂ itself.
- We believe this enhancement is due to the small (fine tuning) of *Dimensional Reduction* occurring when larger Na is added raising the JDOS and enhancing the SHG.

Northwestern

Synthesis of Na_{1-x}K_xAsQ₂

Standardized Temperature Profile $0.1Na_2Se + 0.4K_2Se + As + 1.5Se \longrightarrow Na_{0.2}K_{0.8}AsSe_2$ 48 h Similarly reactions were performed for x = 0.65 and 0.5 12 h 96 h 4 h $\mathsf{RT} \longrightarrow 500 \ ^\circ \mathsf{C} \longrightarrow 500 \ ^\circ \mathsf{C} \longrightarrow 250^\circ \mathsf{C}$ → RT and Na_{0.1}K_{0.9}AsS₂ **Powder XRD** Cc _ 500 \sim Na_{1-x}K_xAsSe₂ $Na_{0.2}K_{0.8}AsSe_2$ NC (.u Volume 480 ntensity (a. Na⁰³⁵K⁰ NC 460 Vormalized 440 Simulated Pbca 420 Pc 400 20 60 10 50 30 0.0 0.2 0.4 0.6 0.8 1.0 2θ (deg.) x, mole

NC = noncentrosymmetric; C = centrosymmetric

Change in interchain [AsQ₂]⁻ interactions due to A cation

As-Se Van der Waals distance ~ 4.64 Å

Northwestern

Bandgap comparison between AAsQ₂ structures

Bandgap increases when larger A cations are added

KAsSe₂ has flat bands like γ-NaAsSe₂ but γ-NaAsSe₂ has greater anisotropy along the chain direction

Effective mass direction	KAsSe ₂	γ-NaAsSe ₂
	Electrons	
a*	0.179 m _o	0.219 m _o
b*	0.154 m ₀	0.517 m ₀
С*	0.238 m _o	4.961 m _o
	Holes	
a*	0.820 m _o	1.360 m ₀
b*	0.522 m ₀	2.159 m ₀
C*	0.715 m _o	2.370 m _o

 γ -NaAsSe₂ has larger electron and hole mass along the chain direction. γ -NaAsSe₂ has flatter bands compared to KAsSe₂ and its analogous compounds. γ -NaAsSe₂ has greater anisotropy.

Low SHG response but high LIDT for Na_{1-x}K_xAsSe₂

All samples undergo 3 Photon Absorption (3PA)

 $\chi_S^{(2)}$: SHG coefficient for the sample $\chi_R^{(2)}$ SHG coefficient for the reference (AgGaSe₂)

Thanks to Hye Ryung Byun, Jang Group Sogang University for SHG measurements Thanks to Michael J. Waters, Rondinelli Group Northwestern University for theoretical calculations

Grow Single crystal of NaAsSe₂

- Challenge:
- A phase transition from *Pc* to *Pbca* exists that may complicate our crystal growth efforts
- Approach: Understand the nature phase transition from *Pc* to *Pbca* and control it.

RESEARCH ARTICLE

Giant Non-Resonant Infrared Second Order Nonlinearity in γ -NaAsSe₂

Jingyang He, Abishek K. Iyer, Michael J. Waters, Sumanta Sarkar, Rui Zu, James M. Rondinelli, Mercouri G. Kanatzidis,* and Venkatraman Gopalan*

Infrared laser systems are vital for applications in spectroscopy, communications, and biomedical devices, where infrared nonlinear optical (NLO) crystals are required for broadband frequency down-conversion. Such crystals need to have high non-resonant NLO coefficients, a large bandgap, low absorption coefficient, and phase-matchability among other competing demands; for example, a larger bandgap leads to smaller NLO coefficients. Here, the successful growth of single crystals of γ -NaAsSe₂ that exhibit a giant second harmonic generation (SHG) susceptibility of $d_{11} = 590 \text{ pm V}^{-1}$ at 2 µm wavelength is reported; this is ~18 times larger than that of commercial AgGaSe₂ while retaining a similar bandgap of ~1.87 eV, making it an outstanding candidate for quasi-phase-matched devices utilizing d_{11} . In addition, γ -NaAsSe₂ is both Type I and Type II phase-matchable, and has a transparency range up to 16 µm wavelength. Thus, γ -NaAsSe₂ is a promising bulk NLO crystal for infrared laser applications.

B-BaB-O₄^[14] and LiNbO₄^[15] have been employed for generating light in the visible regime, they are not suitable for the infrared region because of their lower conversion efficiencies and infrared absorption past 4.5-5 µm wavelength. Although there are several new highly promising materials emerging from various research laboratories,^[16-18] currently only a few infrared NLO materials are commercially available such as AgGaS₂^[19] AgGaSe₂^[20-22] and ZnGeP₂.^[23] A central goal of the laser materials community is to develop new NLO crystals to complement and improve upon the current commercial crystals. This is by no means an easy task, since there are many competing demands on NLO crystals: high nonlinear coefficients, large transparency range, and hence, a

Synthesis of y-NaAsSe₂

Synthetic Challenge: γ -NaAsSe₂ (NC) to δ -NaAsSe₂ (C) phase transition at 450°C

Variable temperature PXRD

Ramp rate: 10°C/min, Mo Ka

C = centrosymmetric

NC = noncentrosymmetric

Northwestern

γ-NaAsSe₂ Single Crystals Grown by the Bridgman Method: first try

Bridgeman furnace

Single Crystals of γ-NaAsSe₂

Temperature 520°C Cold side: 300°C Dropping rate: 0.5 mm/h

Nonlinear Optical Properties of y-NaAsSe2

Department of Materials Science and Engineering

How do we stabilize Cc γ-NaAsSe₂?

Na, Li and K atoms removed, for a better understanding of the structures

Challenge: Can the γ-NaAsSe₂ be stabilized through chemical substitution?

Northwestern

γ -NaAs_{0.95}Sb_{0.05}Se₂ crystallizes in γ -NaAsSe₂ (*Pc*)

Northwestern

Differential Thermal Analysis confirms γ-NaAs_{0.95}Sb_{0.05}Se₂ remains noncentrosymmetric

Good News!

Rate of heating and cooling: 10°C/min ²⁵

As-Se bond length in the different AAsSe₂ structures

Substitution of As with Sb offers bond flexibility to keep the chain

Structural differences between γ -NaAsSe₂ and NaAs_{0.95}Sb_{0.05}Se₂

*Na removed to understand the change in structure better

Northwestern

Bridgman growth of γ -NaAs_{0.95}Sb_{0.05}Se₂

5mm x 4mm x 2mm

Dropping rate: 1 mm/h Kept at 350 °C for 54 hours Dropped to RT at 10 mm/h

Purity of the starting material 3N Na₂Se, 5N As, 5N Sb and 5N Se

Preliminary SHG data at 2 μm on the single crystal of $$\gamma$-NaAs_{0.95}Sb_{0.05}Se_2$$

LiNbO₃ d_{33} : 18 pm/V γ -NaAs_{0.95}Sb_{0.05}Se₂ d_{11} : 592 pm/V

The SHG data is comparable to γ -NaAsSe₂

Comparison of γ -NaAsSe₂ with other NLO materials

These results clearly suggest that stabilizing the γ –NaAsSe₂ is worth exciting!