

... for a brighter future

U.S. Department of Energy

UChicago
Argonne

A U.S. Department of Energy laboratory managed by UChicago Argonne, LLC December 15, 2009

Heat to Electrical Energy Directly

Up to 20% conversion efficiency with right materials

Electrical Power Generation

http://www.dts-generator.com/

Figure of Merit

ZT and Electronic Structure

Isotropic structure

Selection criteria for candidate materials

- Narrow band-gap semiconductors
- Heavy elements
 - High μ , low κ
- Large unit cell, complex structure
 - low κ
- Highly anisotropic or highly symmetric...
- Complex compositions
 - low κ , complex electronic structure

Investigating the A/Bi/Q system

AgPb_mSbTe_{2+m} (LAST-m) NaPb_mSbTe_{2+m} (SALT-m)

(1) (2) Rodot H. Compt Rond **1959** 210 1872-1

No phase transitions to melting point

Synthesis

Ingot properties very sensitive to cooling profile

LAST-18: Synthesis with Slow Cooling

amount

105 g

~2deg/hr

fast cooled sample

Pb

19

Те

20

Sb

1

Ag

0.86

slow cooled sample

Properties of Ag_{1-x}Pb₁₈SbTe₂₀

LAST-18 ZT~1.6

HRTEM of LAST-18

What is the dot made of?

Nanostructures reduce the lattice thermal conductivity

Why do the LAST materials nanostructure?

Dissociated state..unstable

Associated state..stable

Dan

Na-based materials (SALT-m)

Arg

What is nanostructuring worth?

Matrix Encapsulation as a Route to Nanostructured PbTe

Nanocrystals of Sb in PbTe

Argonne

• An optimum concentration of nanoscale second phase is necessary

• Mass fluctuations play a role in thermal conductivity reduction

mal conductivity reduced, however ZT low due to small Seebeck

Electrons

Completed and Processed Ingot

Schock

Composition: Ag_{0.43}Pb₁₈Sb_{1.2}Te₂₀ Weight: 200 grams

24

nperature cyclability

Argonne

Module Fabrication

■ Hot side diffusion contacts, and cold side solder contacts with <10 µW·cm2 have been achieved.</p>

0.08

AISOITIC NATIONAL LABORATORY

Best ZT Materials

Conclusions

- LAST, LASTT and SALT: promising thermoelectric materials for next generation power generation modules. (expected device efficiency ~14%)
- Nanostructures strongly reduce thermal conductivity.
- Nanostructures are closely linked to high ZT.
- Scaleup successful in producing large quantities but material is brittle and contains microcracks.
- Hot pressing and powder processing yield 3x improvement in strength.
- Higher average ZT (>2) needed to reach 20% efficiency.

