### Solid State Chemistry Meets Physcis: Thermoelectric Materials

### **AN INTERDISCIPLINARY COLLABORATION**



### Michigan State University...



### THERMOELECTRIC POWER (Seebeck Coefficient)





**zero current technique:** extremely useful probe for investigation of intrinsic conduction in granular or polycrystalline materials

## **Thermoelectric Applications**

#### PRESENTS The Cool World

### Microprocessor Cooler









### **Biological samples**

LASER diode Cooler

Beverage cooler

### Heat to Electric Energy



Electrical Power Generation Up to 20% conversion efficiency with right materials



### Thermoelectric Benefits

- TE coolers have <u>no moving parts</u>, need substantially less maintenance.
- Life-testing has shown the capability of TE devices to exceed 200,000 hrs. of steady state operation.
- TE coolers contain no chlorofluorocarbons.
- Temperature control to <u>within fractions of a degree</u> can be maintained using TE devices.
- TE coolers function in environments that are too severe, too sensitive, or too small for conventional refrigeration.
  - TE coolers are not position-dependent.

### How does it work?





http://www.designinsite.dk

### **Thermoelectric applications**

- Air conditioning (distributed, environmentally friendly)
- Spot cooling of electronic chips, superconductors etc.
- Thermal suits for fire-fighting, soldier etc
- Waste heat recovery (automobiles, utilities etc)
- Geothermal power generation

# **Figure of Merit**



### Today's situation

- The most efficient materials today is Bi<sub>2</sub>Te<sub>3</sub> alloy
- ZT~0.8-1.0
- Further improvements on Bi<sub>2</sub>Te<sub>3</sub> are not expected.
- New materials are needed



### Thermoelectric Properties of Optimized $Bi_2Te_3$ (e.g. $Bi_{2-x}Sb_xTe_3$ , $Bi_2Te_{3-x}Se_x$ ) at Room Temperature

- S ~ ±220 μV/K
- σ ~ 950 S/cm
- *ρ*=1/σ ~ 1.1 mΩ·cm
- *κ* ~ 1.5 *W/m*·*K*
- ZT ~ 1 !





### Structure of Bi<sub>2</sub>Te<sub>3</sub> and NaCl

NaCl



### Bi<sub>2</sub>Te<sub>3</sub> defect NaCl



MICHIGAN STATE



### Power Factor (S<sup>2</sup>\*σ) vs Carrier Concentration



# Thermopower and Electronic Structure

$$S = \frac{\pi^2 k_B^2 T}{3e} \frac{d(\ln \sigma(E))}{dE} \Big|_{E = E_F}$$
 Mott Equation

- $\sigma(E)$  is the electrical conductivity determined as a function of band filling or Fermi energy,  $E_F$ . If the electronic scattering is independent of energy,  $\sigma(E)$ is just proportional to the density of states (DOS) at  $E_F$ .
- For maximum S, a large asymmetry in the DOS and/or scattering within a few kT above and below the Fermi energy is required.



### ZT and Band Structure

#### **B**- parameter

$$B = \frac{CT^{5/2}\gamma \sqrt{m_x m_y m_z}\mu_x}{\kappa_{latt}}$$



m= effective mass

 $\mu$ = mobility

 $\kappa_{latt}$  = lattice thermal conductivity

T = temperature

 $\gamma$  = band degeneracy

# High γ comes with (a) high symmetry e.g. rhombohedral, cubic (b) off-center band extrema



### **Desirable characteristics**

3

k

- Multiple peaks and valleys in valence/conduction band
- Heavy carrier masses
  - Flat bands

k

3

# Selection criteria for candidate materials

- Narrow band-gap semiconductors
  - For operation at room temperature
- Heavy elements
  - High mobility, low thermal conductivity
- Large unit cell, complex structure
  - low thermal conductivity
- Highly anisotropic or highly symmetric
- Complex compositions
  - low thermal conductivity, electronic structure

MICHIGAN STATE

### Important Issue: Thermal Conductivity

- Slack's proposal: Phonon-Glass/ Electron-Crystal (PGEC)
  - Rattling Ions in the lattice: watch thermal displacement parameters



or tunnels scatter heat-carrying phonons

Rattling ions in cavities

Crystalline solid



### **Reaction Chemistry**

Investigating the System:





# $K_2Bi_8Se_{13}$



# NaCl Structure: The Basic "Raw" Material

"Modules" are cut out of NaCl stock









# $\beta$ -K<sub>2</sub>Bi<sub>8</sub>Se<sub>13</sub>



### $\beta$ -K<sub>2</sub>Bi<sub>8</sub>Se<sub>13</sub> : Room temp ZT=0.9. At 600 K estimated at 1.5 (to be verified)







### Sn Doping in $\beta$ -K<sub>2</sub>Bi<sub>8</sub>Se<sub>13</sub>





MICHIGAN STATE

### Michigan State University /Tellurex Corp. Collaboration



$$\beta - K_2 Bi_8 Se_{13}$$

#### New TE material grown at Tellurex



New TE material grown at MSU

MICHIGAN STATE

# Photo of the first TE module containing 63 couples $n-\beta-K_2Bi_8Se_{13}/p-Bi_2Te_3$



Unoptimized  $\Delta T=36 \circ C$   $T_h=50 \circ C$ All materials grown at Tellurex Inc



### $\alpha$ -K<sub>2</sub>Bi<sub>8</sub>Se<sub>13</sub> versus $\beta$ -K<sub>2</sub>Bi<sub>8</sub>Se<sub>13</sub>



 $\alpha$ -K<sub>2</sub>Bi<sub>8</sub>Se<sub>13</sub>, E<sub>g</sub>=0.76 eV

 $\beta$ -K<sub>2</sub>Bi<sub>8</sub>Se<sub>13</sub>, E<sub>g</sub>=0.59 eV

### $\alpha$ -, $\beta$ -K<sub>2</sub>Bi<sub>8</sub>Se<sub>13</sub> : Electronic structure





n-type character

## Quenched and annealed $\beta$ -K<sub>2</sub>Bi<sub>8</sub>Se<sub>13</sub>





### "Undoped" as-prepared material

### conductivity

#### thermopower



# Crystals of CsBi<sub>4</sub>Te<sub>6</sub>



l mm





### Doped CsBi<sub>4</sub>Te<sub>6</sub>



### Thermal Conductivity of p-type CsBi<sub>4</sub>Te<sub>6</sub>



<u>MICHIGAN STATE</u> university



 $CsBi_{4-x}Sb_{x}Te_{6}$ 

x = 0.3







# CsBi<sub>4</sub>Te<sub>6</sub>



## **Best TE Materials**



### Conclusions

The strategy to search for new materials in the  $(A_2Q)_n(PbQ)_m(Bi_2Q_3)_p$  (Q=Se, Te) system is successful

- Many new promising compounds identified
- All compounds strongly anisotropic
- Doping studies are important in ZT optimization ZT for  $\beta$ -K<sub>2</sub>Bi<sub>8</sub>Se<sub>13</sub> ~0.7 at rt, higher at >400K



### References

- "The Role of Solid State Chemistry In The Discovery of New Thermoelectric Materials" Mercouri G. Kanatzidis, *Semiconductors and Semimetals*, **2000**, 69, 51-100.
- Slack,G. A. "New Materials and Performance Limits for Thermoelectric Cooling" in CRC Handbook of Thermoelectrics" Edited by Rowe, D. M. CRC Press, Boca Raton, **1995**, pp. 407-440
- Tritt T. M. "Thermoelectrics run hot and cold", Science. **1996**, 272, 5266, 1276-1277.
- Mahan, G. D. "Good thermoelectrics" Solid State Phys: 1998, 51, 81-157.
   (c) DiSalvo, F. J. "Thermoelectric cooling and power generation", Science. 1999, 285 5428, 703-706
- Thermoelectric Materials 1998- The Next Generation Materials for Small-Scale Refridgeration and Power Generation Applications, edited by Tritt, T. M.; Kanatzidis, M. G.; Mahan, G. D.; Lyon, Jr., H. B. Mat. Res. Soc. Symp. Proc. 1999, Vol. 545, 233-246.

### Collaborators



- Prof. Tim Hogan, Dept of Electrical Engineering, MSU
- Prof. S. D. (Bhanu) Mahanti, Dept. of Physics, MSU
- Prof. Carl R. Kannewurf, Dept of Electrical Engineering, Northwestern Univ.
- Ctirad Uher, Dept. of Physics, U of M
- Art Schultz, Argonne NL



### **TE Research group**

- Dr Duck young Chung
   Tim McCarthy
- Dr Antje Mrotzek •
- Dr Kuei fang Hsu
- Lykourgos Iordanidis
- Kyoung-shin Choi
- Jun-Ho Kim
- Sandrine Sportouch
- Rhonda Patschke

- Dr. Jun-Huan Do



# Acknowledgements

- Dr. Antje Mrotzek
- Lykourgps lordanidis
- J. A. Aitken
- Jun-Ho Kim
- Joseph Wachter
- Marina Zhuravleva
- Xuini Wu
- Jim Salvador
- Brad Sieve
- R G Iyer
- Dr. Theodora Kyratsi
- Dr. J.-H. Do
- Dr. Duck Young Chung
- Dr. Servane Coste
- Dr. Pantelis Trikalitis
- Dr. Susan Latturner
- Dr. Kuei-fang Hsu

