CEM 913 SPRING 2002 Course in X-ray crystallography

Homework 3, 100 points Due by February 7th

1. Determine whether the following group-subgroup relations are *translationgleiche* or *klassengleiche* or isomorphic. If the unit cell of the subgroup is enlarged this is stated on top of the arrow

$$Cmcm \longrightarrow Pmcm$$

$$P2_{1}/c \longrightarrow P-1$$

$$Pbcm \longrightarrow P-1$$

$$Pbcm \longrightarrow Pbcn$$

$$C \ 1 \ 2/m \ 1 \longrightarrow C \ 1 \ 2/m \ 1$$

$$P \ 6_{3}/mcm \longrightarrow P \ 6_{3}22$$

$$P \ mmn \longrightarrow P \ 1 \ 2_{1}/m1$$

- 2. Derive the space group $P 2_1/m$. Draw two projections. One down the a- axis and one down b-axis. Given a point on a general position x,y,z derive all other equivalent positions. What is the plane-group when this space group is project down the a-, b- and c-axes?
- 3. Sodium bicarbonate NaHCO₃ is monoclinic and it was originally described with lattice parameters:

a=7.51 Å space group P $2_1/n$ b=9.70 Å c=3.53 Å β =93.3

The positional parameters were:

	х	y	Z
Na		<i>0.004</i>	
С	0.077	0.237	0.287
01	0.071	0.367	0.261
02	0.205	0.163	0.193
03	0.940	0.171	0.436
Later workers however later chose a unit cell with			
a=3.53 Å space group $P 2_1/c$			
b=9.70 Å			
c=8.11 Å			
$\beta = 112.25$			

Show graphically that these two cells (and space groups) are equivalent. Give the transformation matrix by which the original position parameters can be obtained in the P $2_1/c$ space group and list the new coordinates.

4. Derive the general positions for space groups $P mc2_1$. Obtain the special positions by considering the coordinates of points lying on the mirror plane.