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Electron transfer rates from time-dependent correlation functions.
Wavepacket dynamics, solvent effects, and applications
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Abstract

The golden-rule expression for the non-adiabatic electron-transfer rate constant in donor/acceptor systems is
analyzed using a Fourier (time-dependent) representation. The rate constant is written in terms of an evolving
overlap of wavepackets on initial and final state potential-energy surfaces. By following the explicit time-dependence
of these functions, we can obtain both standard results of electron-transfer theory for the specific case of a
standard polaron-type model (including inverted-region behavior, temperature dependence, nuclear tunneling
effects, energy sharing) and some important generalizations, including situations of breakdown of the Condon
approximation, analysis of the effects of frequency changes, and simplifications of the relevant vibrational modes
due to solvent, to intra-molecular vibrations, or to both.

The correlation-function method is briefly described, and results of a number of calculations are discussed.
Analysis includes the effects of inhomogeneous broadening and of energy flow into solvent and vibrational degrees
of freedom. Analysis of two particular cases, subjects of recent elegant experimental investigation, are included

to show the applicability of the technique.

1. Introduction

Present theoretical models for the elucidation
of electron transfer (ET) in molecular systems
trace their origins back to the early work of Marcus
[1] and Hush [2], in which they proposed a tran-
sition-state theory model for electron transfer.
Later models made use of a small-polaron ap-
proach, in which harmonic surfaces were defined
with linear electronic—vibrational coupling [3-6]% %%,
these permit treatment of low-temperature rates
associated with nuclear and electronic tunneling.

We have recently presented a new approach to
ET rate theory based on an explicitly time-de-
pendent reformulation of superexchange-assisted
non-adiabatic ET [12]. Here, we present the two-
site version of this approach. It is essentially a
polaron model, in which electronic and nuclear
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motion are linearly coupled, but it allows for an
explicitly time-dependent computation of the elec-
tron-transfer process, offering dynamic as well as
energetic information. This analysis therefore rep-
resents a generalization of Marcus-Hush theory.
Initial- and final-state electronic surfaces may be
harmonic or anharmonic, and the equations of
motion allow for frequency changes. The model
can include temperature variation, anharmonicity,
breakdown of the Condon approximation, and
solvent dynamical and energetic effects, making
it possible to observe directly how these affect the
non-adiabatic electron-transfer process. Further-
more, the model can be extended to a superex-
change picture which explicitly includes bridge
dynamics [12].

Recent resonance or near-resonance Raman
studies on charge-transfer systems by the groups
of Gould and Myers [13] and Hupp and Barbara
[14] have provided direct measurements of vibra-
tional frequencies and displacements, which in
turn define the appropriate parameters used in
our model [12]. Here, we present a numerical
analysis of the two-site non-adiabatic ET model,
applied to a model system as well as the exper-
imentally studied ET systems, and discuss it in
terms of solvent, temperature, frequency change,
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and coupling effects. Finally, we compare it to the
related, but distinct, polaron treatment of Fischer
and van Duyne [8].

2. The model

The two-site model is essentially a linearly-
coupled displaced oscillator system [7,12]. It has
been used to describe non-adiabatic electron trans-
fer between two states defined by electronic sur-
faces I and F, which in turn consist of vibronic
levels i and f, respectively. At its simplest level
(harmonic surfaces, linear displacement coupling,
Condon approximation, etc.), the model is essen-
tially the standard polaron treatment [4-8], but
the analysis may be easily extended to include
anharmonicity, solvent effects, breakdown of the
Condon approximation, etc. In addition, the treat-
ment of the model differs substantially from that
of the usual polaron system, allowing for a dynamic
rather than energetic view of the electron-transfer
“process.

Figure 1 shows a one-dimensional depiction of .

the simplest model, including two harmonic sur-
faces (initial- and final-state electronic surfaces,
with minima at X;° and X;°, respectively), their
energetic and nuclear coordinate displacements
(AE and (X&°—X,°), respectively), and the total
reorganization energy A. The ET rate then cor-
responds to motion of the system from the bottom
of the left well to that of the right well.

After rewriting the golden-rule rate expression
in dynamical form and separating the model ham-
iltonian into nuclear and electronic parts, the rate
of transition from state I to state F in the two-

Energy

Fig. 1. A model one-dimensional, two-site, non-adiabatic system,
with reorganization energy A and energy difference AE.

site case is given by [12]
I1I=lVIF‘2f dr e—iAEt<i1eiHFt e—iHItli>T (1)
0

in which Ve is the electronic coupling matrix
element between states I and F, AE is the difference
in energy between states I and F, H; is the nuclear
hamiltonian for state s (=LF), and {(...); refers
to a thermal average over initial and final vibronic
states. Here we have also assumed the Condon
approximation, so that V;;=V} for all i and f, and
h=1.

Calculation of rates then involves propagation
of initial and final state wavepackets, evolving
according to Hy and Hy, respectively, and analyzing
the thermal average in eqn. (1), followed by a
time integral. Anharmonicities and frequency
changes are included in H, (Section 9), temperature
effects are included in the thermal average over
a Boltzmann distribution of initial states (Section
8), and effects of the breakdown of the Condon

‘approximation can be included by making V' time-
‘dependent, and including it in the time integral.

Observation of the integrand of eqn. (1) allows
a detailed, time-dependent, dynamical analysis of
the electron transfer process (see, for example,
Figs. 2-5).

3. Semi-classical treatment and gaussian
wavepackets

Following Neria et al. [15], we now make a semi-
classical approximation by replacing |i) in egn. (1)
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Fig. 2. exp[ —1AE(J(#) for the model Fe (2+/3+) system described
in the text and Table 1. J(¢) here is as defined in eqn. (4b), and
thus, in this and subsequent figures, the vertical axis is unitless.
Relevant parameters for the one-mode case shown are as follows:
ho=431 cm™!; A;=2926 cm™'; AE=0; T=0 K. Note that, in
the absence of irreversible processes, we observe recurrences.
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Fig. 3. exp(—iAENJ(t) for (a) the HMB/TCNE (AE=11 600
em ™Y Ve~ 3500 cm ™ A;=3515 cm™?) and (b) the Ru/Fe charge
transfer systems (AER=3000 cm™; Vip=~3200 cm™!; A;=3220
cm™!) (see text). These are single trajectories, with T=0 K.

by gaussian wavepackets centered about the clas-
sical position and momenta of the atomic nuclei
moving on the I potential surface. Gaussian wave-
packets are sketched in Fig. 1 (shown at t=0 with
zero momentum). They are propagated using the
nuclear hamiltonians [16]
H. LS +V, 2

== 5 V) @
on the electronic surfaces S=1 and F, defined by
Vs(X); here, m is the reduced mass, and A=1 [16].
The thermal average is implemented by sampling
the classical positions and momenta on surface I
from a Boltzmann distribution.

Equation (1) then leads to

L= f dt e TAEIC(E) (3)
where

CO=VwlI@O)r (4a)
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Fig. 4. {exp[—iAEt)J(z)) for (a) the HMB/TCNE and (b) the
Ru/Fe charge transfer systems, with 200 cm ™! of inhomogeneous
electronic gap modulation added (see text and Fig. 3). These
represent the average of 200 trajectories (sufficient to give con-
vergence of C(r)), with trajectories chosen at T=0 K.

and
J(#) = Gi(0)]e™™ e~ *i(0)) (4b)

Here, C(¢f) contains a thermal average over
nuclear potential energies and wavefunction over-
laps ({...)r). The correlation function J(¢) repre-
sents the overlap, at time ¢, between the two
wavepackets which start as i(0) at #=0; one wave-
packet is propagated on surface I, while the other
is propagated on surface F. J(¢) is thus essentially
a time-dependent Franck—Condon amplitude.

Neria et al. [15] have used the frozen gaussian
approximation (FGA) of Heller [16(b)] to imple-
ment the time evolutions in eqn. (4b); however,
this is not necessary (although justified in many
condensed-phase processes, owing to the short
relaxation time of this function). The general
approach of Heller [16(b)] yields the following
expression for the gaussian time evolution:

i(0)) = explia(t)(X —X,(1))® ,
HIP()X ~ X)) +iv ()] &)

eiHst
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Fig. 5. (exp[—iAEtJ(t)) for (a) the HMB/TCNE and (b) the
Ru/Fe charge transfer systems, with both 200 cm ™! inhomogeneous
gap modulation and a 1 cm™! solvent mode (Ay=2300 cm™%)
added (see text). Integrals are (a) 0.272 fs and (b) 4.46 fs.
Trajectories are chosen at T=0 K. Solid lines represent the
averaged integrand (exp[—iAEt}J(¢)), while the broken line is a
running sum of the integrand (as seen in '"H NMR plots, for
example). Note that the integral is unchanging after 50 fs in
both cases; see Table 2 for integrated rates.

It is convenient to work in reduced coordinates
defined (with #=1) by

X=Xm"”? (6a)
P=Pm~" (6b)
and
a=— (6¢c)
Then,
ei(0)) = explia(t) (X — X(t)?
+iP ()X~ X (1)) +iv(t)] (7)

The equations of motion for a harmonic surface,
represented by normal modes {k}, are then [16]

Xk = ﬁk (88.)

Pk: —WiXk (8b)
b= — 242 — 4ot (8)
')"k=ﬁlz<_Ek_&k (Sd)

in which X, is the deviation from the minimum
in the kth direction and ey is the corresponding
frequency. E, is the energy in the mode k, so that
the total energy E is given by

E= > E= > 3[e2X2+ P2 (9)
k k

Analysis of resonance or near-resonance Raman
spectra [13,14] provides unitless displacements D,
between the initial- and final-state surfaces, as
well as frequencies w,. (Note that these values
were obtained [13,14] assuming harmonic surfaces
and no force-constant changes or mode mixing
between ground and excited states, which is con-
sistent with our model.) The contribution of mode
k to the total reorganization energy A (see Fig.
1) is Ax=1/2A%wy, so that

1
This sum over k includes both inner shell and

outer (solvent) modes. Initial conditions (for each
coordinate k) are given by

a(0)= % o, (10a)
and
1(0) = -3 1n[w1] (10b)

The initial position and momentum are chosen
randomly: for a given trajectory, a random number
g in the range 0<q <2 is chosen, and X,(0) and
P,(0) are assigned as follows:

X:(0) = V2(ry + By cos(q) (11a)
and
P(0)= — V2w (ni+3) sin(g) (11b)

This gives the proper total energy E for a given
vibrational level n ={n,}. Propagation of the wave-
packets on the initial- and final-state surfaces is
then straightforward, as is the evaluation of the
rate. Except where indicated, we assume that
initial- and final-state surfaces are described by
the same characteristic frequencies, and we use
the FGA of Heller [16b], in which the width term
a is fixed in time (a(t) =iw/2, the phase term vy
is fixed as well). We relax these assumptions in
Section 9 below.
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4. Initial observations

The remainder of this text deals with the two-
site, non-adiabatic ET model as applied to three
systems. The first is a reduced-dimensionality
model for the hexa-aquo-iron (2+4/3+) self-ex-
change reaction, based on the analysis of Siders
and Marcus [5], which describes the inner-shell
(iron—oxygen stretch) motion as a single, averaged
harmonic mode with #iw;, =431 cm™! (Table 1).
We will address the additional solvent modes
suggested by Siders and Marcus in Section 6 [5].
In Fig. 2, we show a plot of e *BY(¢) at T=0 K
for this one-mode, two-site system (A; is the inner-
shell reorganization energy). Since rate constants,
like other linear transport coefficients, are clearly
defined only when the system under study somehow
incorporates dissipation, in the absence of external
perturbations (e.g. dephasing, damping, gating,
etc.), we observe recurrences, the integral in eqn.
(4a) becomes divergent, and no rate can be defined
[10,12]). This is, however, a model system, and real
systems have many more active modes, which will
act to remove recurrences on a reasonable time
scale (e.g. 0.1-1 ps) via inner shell and solvent
interactions. However, for all of our models, and
indeed for any comparable models without dis-
sipation, significant recurrences are still observed
[16].

Markel et al. [13], and Barbara and co-workers
[14] have each provided (via resonance and near-
resonance Raman scattering measurements) a
mode-by-mode analysis of the coupled vibrations
in the ET reactions in the hexamethylbenzene/
tetracyanoethylene charge transfer complex (HMB/
TCNE) and the (H;N);Ru-NC-Fe(CN)s'~ mixed-
valence complex (Ru/Fe), respectively, including
experimentally-derived equilibrium displacements
and vibrational frequencies. These data permit the
definition of a multimode harmonic double-min-
imum potential surface, incorporating the vibronic
coupling (at the displaced oscillator level) to the
many modes (11 and 8 for the HMB/TCNE and

TABLE 1. Parameters for the Fe(2 +/3 4 ) charge-transfer system:
frequencies, reorganization energies, and unitless equilibrium
displacements for the one-mode or two-mode treatment (see
text). AE=0

w A A
(em™1) (em™1)

431 2969 3.68
389 1160 2.44
490 1840 2.74

Ru/Fe systems, respectively). In Fig. 3, we plot
e "“FJ(r) for these two systems. Again, these rep-
resent the systems as free molecules, with no
solvent, and we again observe recurrences.

For comparison, we note that in the molecular
dynamics simulations of Maroncelli and co-workers
[17] and Hynes et al. [18] on polar aprotic solvents
such as acetonitrile, significant solvent reorgani-
zation occurs on a time scale of about 0.1 ps. We
assume, therefore, that systems (such as those
studied here) which exhibit recurrences of the time
correlation function on time scales greater than
100 fs must be influenced by solvent motion. Even
without this assumption, we must treat the solvent
as a source of both (a) spectral line shifts and
broadening, and (b) damping, brought about by
the random interaction of the solvent with the
solute. We shall first examine the spectral line
broadening aspects of the solvent, and then com-
bine this with the energy-accepting ability of the
solvent.

5. Inhomogeneous spectral line broadening

The role of solvent damping and dephasing in
producing spectral line broadening (both vibra-
tional and electronic) in energy and proton transfer
has been examined extensively [19,20]; such solvent
effects are clearly crucial in any discussion of
electron transfer [18,21].

Spectral line broadening can occur in a number
of ways. The action of the solvent on a system
affects the initial and final electronic state energies.
This gap modulation is by far the most common
form of broadening described in the current lit-
erature [21(b)], and we have chosen to focus on
its role. Dephasing might also occur via random
noise associated with the normal mode vibrational
frequencies of the system, the equilibrium dis-
placements of the electronic states, or the elec-
tronic matrix elements (breakdown of the Condon
approximation).

Electronic gap modulation may have cither in-
homogeneous or homogeneous  character
[20,21(b),22], depending on the relative timescales
of the experiment (in this case, ET) and the
underlying gap fluctuations (i.e. fluctuations of the
solvent matrix). In the limit of fluctuations that
are much slower than the experiment, inhomo-
geneous broadening predominates, while homo-
geneous broadening predominates in the opposite
limit. It is possible to distinguish experimentally
between homogeneous and inhomogeneous broad-
ening via optical-pulse and photon-echo techniques
and non-linear experiments [20(b),21(b),23(b)].




92 M.D. Todd et al. | ET rates from time-dependent correlation functions

In our model, inhomogeneous gap modulation
is treated as follows. Inhomogeneous modulation
is represented by an ensemble of trajectories, each
with a distinct constant value of AE (=AE}, the
electronic energy gap), sampled from a Gaussian
distribution characterized by

(AEY=AE* (12)
and
((AE—(AE))?) =A? (13)

Such a gaussian distribution is justified in the
stochastic theory in the case of a large solute
molecule or system surrounded by relatively small,
closely packed solvent molecules; a lorentzian dis-
tribution applies in the opposite limit [20]. Homo-
geneous modulations are represented by a time-
dependent stochastic energy gap for each trajec-
tory.

We restrict our attention to (gaussian) inho-
mogeneous broadening, as though the ET systems
were in frozen, glass-like matrices, for the sake
of ease of calculation. The rate defined in eqn.
(3), then, includes an average over ensemble, so
that

()= < f dze—mEfC(t)>

where we average over a gaussian distribution of
AE. We also make the assumption that the ex-
periment is complete on a finite timescale, and,
using numerical integration techniques, the average
of the integral is then equal to the integral of the
average (of e “#C(f)). We can then plot the
average of e “FJ(¢) for systems with gap mod-
ulation (as in Figs. 4-6,8), and compare them to
Fig. 3 (without gap modulation).

Figure 4 is a plot of (e "“*J(z)) for the HMB/
TCNE and Ru/Fe systems (7=0 K), with inho-
mogeneous gap modulation added (4 =200 cm Y.
The magnitude of the gap modulation here is
arbitrary, but it is clear that such modulation affects
the integrand of eqn. (3) dramatically: all recur-
rences beyond about 100 fs are effectively removed.
The dependence of the averaged rate on A (for
A=100-1000 cm™*) for the Ru/Fe system (T'=0
K) is given in Fig. 9; note that the rate decreases
less than 10% over this range. (Suitable values
for A for these, or similar, systems have not been
reported.)

(14)

6. Treatment of solvent as additional modes

The solvent has an important role quite apart
from being just a source of gap modulation. As
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Fig. 6. Comparison of thawed vs. frozen wavepackets, and fre-
quency-changing wvs. non-frequency-changing surfaces, in the
model hexa-aquo-iron self-exchange system. In all three cases,
two solvent modes (1 and 170 cm™") are added (no recurrences
were observed after 20 fs). Note that, for this symmetric system,
all three treatments are basically identical, with similar integrals
(differences are less than 10%). (See text and Fig. 7.)
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Fig. 7. Pictorial description of the hexa-aquo-iron (2+/3+) self-

exchange reaction (characteristic frequencies: 389 and 490 cm™Y

see Table 1). When the electron is transferred, there are frequency
changes corresponding to changes in oxidation states of the two
iron centers. Siders and Marcus have approximated this two-
mode system by a single energy-weighted average system of one
mode (431 cm™"). Then the reaction coordinate is given by the
broken line (see text and Fig. 6). Here, the differences in frequency
have been over-emphasized for clarity.

shown above, it is far more common in the electron-
transfer problem to treat the solvent as the source
of polarization modes that couple with the system.
This viewpoint was pioneered by Marcus [1]. A
solvent must be treated both as a dynamic medium,
characterized by random short-range motion (of
solvent molecules) which leads to gap modulation
but does not act to accept energy, and as an energy
acceptor, adding significantly to the total reor-
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Fig. 9. Dependence of averaged rate (7'=0 K) on gap modulation
constant A4 (see text) for the Ru/Fe charge transfer system.

ganization energy of the electron-transfer process.
Note that the treatment of the previous section
fails to include the energy-accepting properties of
the solvent, which can result in significant changes
in rate calculations (see Table 2). (In the usual,

TABLE 2. Comparison of the present analysis with that of Fischer
and van Duyne [8] including both the steepest-descents and
numerical integration methods for rate determination, as well
as experimental results. Rates are given in s™?

HMB/TCNE Ru/Fe
Current work 2.9x 101" 1.0x 10"
+200 cm™! broadening
Current work 3.0x 101 4.0+10%
+200 cm™! broadening
+1 cm™! solvent mode
Fischer/van Duyne 1.2x10% 1.7 +10%
steepest descents®
Fischer/van Duyne 3.0 10% 4.1+10%
numerical integration®
Experiment® ~ 10" ~10"
*This includes a 1 cm™! solvent mode and 200 cm™! of inho-
mogeneous gap modulation (see text) [8].
*This includes a 1 cm™! solvent mode and 200 cm™! of inho-

mogeneous gap modulation. Numerical integration steps of about
0.04 fs (2 au) were sufficient for convergence [8].
‘Refs. 14 and 25.

lL.e. Marcus-type, picture, Ay Or A, enters only as
an accepting mode.) A convenient way to represent
the energy-accepting characteristics of the solvent
is to include a finite series of harmonic oscillators
with appropriate (solvent) frequencies and reor-
ganization energies [21(b),23(a),23(b)], while the
gap-modulation aspects are treated as in the pre-
vious section. Other groups have treated the solvent
motion as a single, classical, overdamped oscillator
[21(a)], but, in this treatment, we shall treat the
solvent as an undamped oscillator.

In this simplest model treatment, we add a
single-solvent mode with #Aw,,;=1 cm™! and
Aso1 =2300 ecm ™! [5,26]. This single-solvent mode
is clearly a drastic misrepresentation and over-
simplification, as evidenced by both simulations
and neutron-scattering measurements on real lig-
uids. We use it here as a zero-order model for
largely historical reasons [5,26]; it represents the
solvent as an energy acceptor, but fails to represent
it in terms of proper electronic and nuclear mo-
tions™. In a more rigorous treatment, the 2300
cm~' of reorganizational energy would be dis-
tributed among large, slow translational and ro-

Lin and co-workers have, in an extensive and important series
of papers, shown that the saddle-point method can be used in
the context of a correlation-function approach to ET rates, to
examine such effects as temperature dependence, anharmonicity,
and frequency changes. See, for example, ref. 24.

A more general and reasonable approximation for the single
solvent mode frequency is provided by R.R. Dogonadze and Z.
Urushadze [26(d)]. See also B.S. Brunschwig et al. [26(e)].
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tational motions, faster librational and vibrational
motions, and very fast electronic motions. Such a
treatment (which would generally be based on the
use of molecular dynamics simulations [23(c)] to
obtain the appropriate spectral density
[23(c),23(d)]) would also make unnecessary the
use of inhomogeneous or homogeneous gap mod-
ulation, as it would be accounted for by a dis-
tribution of solvent configurations and motions.
Representing the solvent by a single 1 cm ™! mode
allows the (model) solvent to act only as a slow
damping process, in addition to its energy-accepting
ability. In spite of its obvious limitations, this solvent
approximation serves to illustrate our method.

Addition of this single low-frequency mode to
the HMB/TCNE and Ru/Fe systems gives results
shown in Fig. 5, with gap modulation (4 =200
cm~ ') added. Qualitatively, the additional solvent
mode acts to damp out recurrences in a manner
similar to that of the gap modulation alone (Fig.
4); however, the integrated rates differ between
the two methods (see Table 2). In the case of the
HMB/TCNE ET system, the rate is increased about
tenfold, as the additional solvent reorganization
energy makes the system less inverted (AE is closer
to Ayy), while in the Ru/Fe system (which lies in
the normal regime), the rate decreases by about
five times (see Section 7 and Table 2 below). This
is as expected from the Marcus-like factor
exp[ — (A + A)%/(4AKT)].

It should be noted here that our treatment of
the solvent in terms of two distinct mechanisms,
as a source of random modulations of AE and as
a significant contribution to A, (and therefore as
an energy acceptor), can be understood in terms
of the proton-transfer work of Hynes and co-
workers [10]. They employed a cumulant expansion
of a time-dependent flux correlation function, and
found that the solvent influence on the proton
transfer rate can be decomposed into two distinct
mechanisms: a direct mechanism which concerns
the interaction of the solvent with the proton
charge (as well as the charges of the solute mol-
ecule) and appears in the modulation of AE (thus,
a source of gap modulation), and an indirect one
which enters via a damping, energy-accepting
mechanism [10].

7. Electronic coupling matrix element and
calculation of rates

Experimental methods for an estimation of Vig
include the Hush-Mulliken analysis [27], which
makes use of the oscillator strength for the inter-

valence optical transition, and the electrochemical
method developed by Curtis et al. [28]. The
Hush—Mulliken analysis [27] relies on knowledge
of the ET distance for the optical ET transition,
and (typically) the metal-to-metal atomic distance
(in the case of a bimetallic inter-valence ET system)
is used:

A— E 1/2
0_2 (é'max Z-léf op) (15)

in which €,,, M™! cm™1') is the extinction coef-
ficient of the inter-valence absorption, Ay, (cm™1)
is the full width at half maximum, E,, (cm™") is
the optical energy of the ET transition, e (unitless)
is the amount of charge transferred, and R (A)
is the charge-transfer distance. This can result in
an underestimation of V¢ due to an overestimation
of R (or, alternately, an overestimation of e) [28(b)];
for example, the recent work of Oh and Boxer
[29] indicates that the actual distance for inter-
valence transfer in the (H;N)s;Ru-4,4'-bipyridine-
Ru(NH;)s°* mixed-valence complex is only about
45% of the geometric distance between the metal
centers.

Understanding the limitations of the Hush—
Mulliken analysis, we have calculated the electronic
coupling element in the HMB/TCNE system to
be 3500 cm ™! (with the implication that this is a
lower limit; parameters for eqn. (15) were esti-
mated from the optical absorbance spectrum re-
ported by Markel ez al. [13], and a charge transfer
distance of 4 A was used as a high limit"'"). We

It is interesting to note that the outer-shell reorganization
energy used here, 3900 cm™Y, is nearly twice that suggested by
Marcus, and that if we use 2300 cm™' as the (outer-shell)
reorganization energy, we get a rate of about 10> s~ (10" for
the Fischer—van Duyne steepest-descents analysis). It should be
noted that the fluorescence decay measurements may give rates
which are far from those of thermal systems, as the thermal
transfer occurs from an initial state which is at thermal equilibrium,
whereas that in the fluorescence experiment is most likely far
from such an equilibrium. It is also very important to note that,
in the HMB/TCNE system, the broad absorbance band most
likely consists of (at least) two closely spaced transitions, and
that therefore the outer-shell reorganization energy given by
Mpyers is probably an overestimation. Again, this is an extremely
inverted reaction (AEeperimentas=11 600 cm™?).

A geometry minimization on Gaussian-92 was performed on
the HMB/TCNE system, using an STO-3G basis set, and the
following constraints: the HMB and TCNE fragments were copla-
nar; the non-protonated core of the HMB had Dy, symmetry;
the TCNE had D, symmetry; each CH; fragment had G,
symmetry. The intermolecular distance was then calculated to
be 3.89 A: thus, our upper limit of 4 A is not unreasonable.
According to crystal structures, the intermolecular distance (in
the crystal, subject to packing forces) is 3.35 A [30], and is most
likely a lower limit of the intermolecular distance. However, the
distance noted in eqn. (15) is the distance over which the effective
charge is transferred; if we take this to be one electron, then
(as noted) the distance may be much shorter than even the
crystal structure predicts.
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use the experimentally obtained Vi of Dong and
Hupp [28(b)] (3200 cm ™) for the Ru/Fe ET system.
It should be noted that these couplings obviously
correspond to adiabatic systems, while our model
is based on non-adiabatic ET. Clearly, this is
inconsistent; however, we make use of these systems
and these data simply to illustrate the treatment.

Results of rate calculations at 7=0 K for the
HMB/TCNE and Ru/Fe ET systems, both with
the gap-modulation treatment of Section 5 and
the additional 1 cm™! solvent mode of Section 6,
are indicated in Table 2. For comparison, rates
calculated using the steepest-descents method of
Fischer and van Duyne [8] (also at 7=0 K) are
included. Also, Fig. 10 gives a comparison of this
simplest model (gap modulation (4=200 cm™)
and solvent mode (Aw,,=1 cm™! and A= 2300
cm ') added) with the method of Fischer and van
Duyne for a range of electronic separation of
initial and final states (AE) in the HMB/TCNE
system (experimentally obtained AFE is indicated
in the figure by a vertical line [13]). Note that
both methods give the expected inverted region
effects on rates [31], including the expected non-
quadratic behavior for a multi-mode energy gap
[32,33].

Note, too, that the inner and outer shell re-
organization energies are properly included
(A;=3515 cm ™', A, =2300 cm™!; again, this outer
shell (solvent) reorgamzatlon energy is from the
single-mode solvent approximation used in Section

€
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Fig. 10. log¢ky) (s~*) vs. AE for the HMB/TCNE charge transfer
system, with an additional 1 cm™! (solvent) mode with A, =3900
cm™ (from Markel et al. [13]) and 200 cm~! inhomogeneous
gap modulation. Solid line represents the time-dependent golden-
rule (TDGR) formulation, while the broken line represents the
steepest-descents (SD) method of Fischer and van Duyne (see
text and ref. 8). The vertical line represents the experimentally
measured AE for this system. (The noise associated with the
TDGR treatment is the result of numerical integration error.)

o

6)'. Both in Table 2 and Fig. 10, we observe that
the steepest-descents method gives rates which
are about ten times larger than those of our model.
The steepest-descents method uses a stationary
phase approximation to calculate the rate integral,
and, in so doing, yields larger rates than those
calculated with our analysis. To evaluate an ex-
ponential function by steepest descents, one ap-
proximates as [8,24]

oo

f tef(’)~f dtexp[f(t)
1 9() « t)z]

2
dropping terms higher than second derivative,
which yields an easily integrated gaussian function.
Choosing the saddle point #, such that

13

+ —

(16)
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and then

@

1/2
2
(0 = of(ts)
fdtef eft (]azf/at2|,)

(18)
the rate is then given by

ke=Vie ef<‘s><—%7%)l/2 (19)
in which (at T=0 K)

ft) =iAEwt,~ 2 A [1—e™™"] (20)

i
where w; and A; refer to the frequency and re-
organization energy corresponding to mode j, and
(again) we use #i=1 [24]. Note that the steepest-
descents method fails at AE=0 (if T=0 K).

As an alternative to making the steepest-descents
approximation of eqn. (16), we have explicitly
evaluated the left-hand side of eqn. (16) using
numerical integration [34] and appropriately small
time steps (2 au). Here, f(#) is given by eqn. (20),
in which ¢ is replaced by #; inhomogeneous broad-
ening (in the same manner as described in Section
5) and a single solvent mode (as described in
Section 6) are included, and this treatment is

"Note that the treatment of Bosma et al. includes gap modulation
along with the overdamped oscillator. We can do this in our
model as well, although the treatment of the solvent as an
overdamped oscillator may be inappropriate.
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compared with both the steepest-descents ap-
proximation (also with broadening and solvent
mode added to the expression for f(f,) in eqn.
(20), and also evaluated using numerical integra-
tion [34]) and our model.

The steepest-descents approximation for the
HMB/TCNE plus single-solvent mode and 200
cm ™! broadening (as indicated in Table 2) gives
arate of 1.20 X 10" s—*, while an explicit treatment
of the same expression (no steepest-descents ap-
proximation) gives an integrated rate of 3.0 10"
s™!, in agreement with our time-dependent for-
mulation. (For this simplest case of displaced
harmonic oscillators, our time-dependent wave-
packet treatment should be exact, and must agree
with the polaron theory result.) Thus, it seems
the steepest-descents approximation overestimates
the rate by about five times for this particular
system. (Similar results are observed for the Ru/
Fe system; see Table 2.) Variation by less than
a factor of ten, over a force constant range of
more than seven orders of magnitude, demonstrates
that the steepest-descents approximation scheme
works quite well for this situation of multiple
modes and a substantial energy gap.

8. Temperature effects

Figure 11 indicates the effects of temperature
on the single-mode model Fe (2+/3+) self-ex-
change system, indicating (e "**J(t))r (average
over a Boltzmann distribution) for 7=0, 100 and
1000 K. Here, trajectories were defined according
to eqn. (11), in which n was chosen randomly for
each trajectory based on probabilities according
to a Boltzmann distribution. Note that, in the case

1.0 T
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T=0K

0.6

0.4

0.2

0.0

Re <e & J(1)>

-0.2

L L L B

04

_0‘6|||l|||||||
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Time, fs
Fig. 11. Comparison of integrands of the one-mode (431 cm™Y)
system of Fig. 2 at 0, 100, and 1000 K (see text) (200 trajectories).

Note that the width and amplitude of the recurrences are narrowed
at higher temperatures.

of a purely harmonic system, recurrences are still
observed; however, raising the temperature nar-
rows the recurrences. The effects of temperature
on rate can best be described by Figs. 12 and 13.
In Fig. 12(a), at the T="0 K limit, only the ground-
state vibrational level on surface I is populated.
As the temperature is raised, the rate increases
as the vibrational levels closer to the crossing point
(E.= Aoy) between the electronic surfaces (which
have small Franck-Condon barriers) become pop-
ulated. Then, as even higher levels become pop-
ulated (Fig. 12(c)), the rate tends to drop again,
as levels which are much higher than the crossing
point (E,> Ay) have larger Franck—Condon bar-
riers. If the system is in the normal (non-inverted)
region, we see that the rate increases with tem-
perature as shown in Fig. 13(a) for the Fe (2+/
3+) system (AE=0; two solvent modes of 1 and

T=0K
(a)
T>0K
(®)
T>>0K
©

Fig. 12. Pictorial description of temperature effects on rate for
a degenerate system. At T=0 K (a), only the n=0 vibrational
level is populated, and Franck—Condon overlaps are small. At
T>0 (b), levels closer to the crossing point become populated,
and the average rate increases. As higher levels become populated
(T>0) (c), the rate drops again, as higher vibrational states
again have smaller Franck—Condon overlaps with the final-state
surface. The curves depicted are sketches of (Y?).




M.D. Todd et al. /| ET rates from time-dependent correlation functions 97

7.20 T (lD T T T T T L L
715k @) 3
—~ 7.10[ 3
o i
§ 7.05F 3
- - o)
8 7.00F o 3
- [ O
> 695k o} e
Nt L
%ﬁ f © O ]
—~  6.90f 0 3
: o ]
6.85 - O O ‘:
680: PR Y PR | 1 1 1 P 3
0 200 400 600 800 1000
Temp, K
[ o L S S S S S S B B S S S S
o ©
6.0 © .
O L o O ]
E
2 o
i o ]
g sl :
2 o
g o
o | ]
sof o -
(b)
45 [ FUREPEN SO0 SRV I NS EUOU S S S A SNr SR UN S S SHNPU RS SO W0 J SR Iy
0 200 400 600 800 1000
Temp, K
6.90 A A A I A B B LN B
[ (@] le) (C)
6.851 o N
a r o)
g © 0 40
-2 6.80F o 0 ]
3
2
™ 675f ]
vt t 4
=y 1
= ]
6.701 ]
o]
665 L PSSR S | - ) FE S ] |
0 200 400 600 800 1000
Temp, K

Fig. 13. log(averaged rate) vs. temperature for the three-mode
model system (frequencies are 1, 170 and 431 cm ™ %; corresponding
reorganization energies are 770, 1487 and 2926 cm™"); includes
200 cm ™! inhomogeneous gap modulation. (a) Degenerate system.
(b) Crossing point (AE = A,,). (¢) Inverted by 1800 cm™'. The
initial jump comes from population of many levels of the 1 cm™!
mode with T=100 K, as opposed to the relatively restricted

motion of the initial-state wavepacket at T=0 K.

170 cm ™" added [5]). If the system is at the crossing
point (AE=A,,), raising the temperature causes
the rate to drop as the ground vibrational state
becomes depopulated, as seen in Fig. 13(b). If
the system is not far from the crossing point,
raising the temperature (as described above) first
increases the rate, then decreases it, as shown in
Fig. 13(c) (1800 cm™"' in the inverted region).
Temperature effects are not very large, however:
note that, over the range 0-1000 K, the rates
change, for this particular system, less than an
order of magnitude. (For comparison, the Ru/Fe
system is in the normal (non-inverted) regime,
close to the crossing point, while the HMB/TCNE
system is well into the inverted region. The Fe
(2+/3+) self-exchange system is degenerate, ex-
cept where artificially modified, as above.) The
widths of the wavepackets are temperature-de-
pendent [15], which may slightly affect the rate,
but we have not examined such dependence here.

9. Frequency changes

If we project a wavepacket defined by one surface
(say, the initial-state surface) onto another surface
(say, the final-state surface) defined by different
frequencies, several changes are expected. Because
the potential surface slopes change, the rate of
translation of the product wavepacket will change.
Also, a(t) is no longer necessarily equal to «(0)
(see eqn. (5)), and the width of the wavepacket
becomes time-dependent (“thawed”). In addition,
if the surface is not harmonic (e.g. Morse), « will,
in general, be time-dependent, and the gaussian
will “fracture” near the inner turning point. We
address the possibility of frequency changes here,
which typically occur in any non-symmetric system,
and leave anharmonicities for a later paper.

We compare here the frozen wavepacket ap-
proximation, with and without frequency changes,
with propagation of thawed wavepackets (see Sec-
tion 3 for a definition of frozen and thawed gaussian
wavepackets). A simple example is the model of
Siders and Marcus for the Fe (2+4/3+) self-
exchange [5], in which, rather than approximate
the two  frequencies corresponding to
Fe(2+)-oxygen and Fe(3+)-oxygen stretching
modes by an average 431 cm ™' mode, we use the
two frequencies of 389 and 490 cm ™! for Fe(2+)
and Fe(3+), respectively [5]. It should be clear
that there is a frequency change involved when
going from the initial-state surface to the final-
state surface: when the electron is transferred, the
characteristic frequency of the donor iron becomes
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that of the acceptor, and vice versa. We have
surfaces which can be represented by the two
(exaggerated) ellipsoids of Fig. 7 — the initial-
state surface and the final-state surface are dis-
placed in both coordinates, and are rotated 90°
relative to each other. The broken line represents
the (averaged) 431 cm™' approximation.

For comparison of rates, we have added two
additional (solvent) modes, described by Siders
and Marcus [5], with characteristic frequencies of
1 and 170 cm~' (corresponding reorganization
energies are 770 and 1487 cm~!; we assume that
these frequencies and reorganization energies do
not change upon transfer). Figure 6 gives a com-
parison of the frozen, four-mode (two internal and
two solvent) system with the thawed (see Section
4.4) version of the same system, as well as the
(frozen) four-mode (two 431 cm ™! modes and two
solvent modes) system. Note that no significant
differences are apparent, and that the integrals
are basically identical (less than 10% difference).

The reason for the very small effect of frequency
changes here is simply the choice of physical system:
the symmetric Fe**/Fe** — Fe®*/Fe** ET reaction
has one frequency increasing at the same time
that the other decreases the same amount, so that
the net effect is very small. Figure 6 shows that
the correlation functions at short time do differ,
but only very slightly. (The correlation function
at t>20 fs has decayed to the point where it does
not significantly contribute to the overall rate, in
all three cases of Fig. 6.) Major differences will
occur for ET reactions in which such compensating
frequency changes do not occur, such as between
a metal complex and an organic. Calculations on
such systems are in progress’.

10. Approximate vibrational representations

In the studies of betaine-30 by Walker et al.
[37], they combine the models of Sumi and Marcus
[38] and Jortner and Bixon [39] to yield a model
for the calculation of ET rates in solution which
breaks the reorganization energy into three parts:
Agms Aavin, and Ay, for a high-frequency, quantal-
vibrational (internal) mode, a low-frequency, clas-
sical vibrational (internal) mode, and a classical
solvent mode. In the HMB/TCNE ET system,
Markel et al. [13] found that two modes, a low-

"The possible importance of frequency changes on ET rates
has been stressed by Kakitani and Kakitani [35(a)] and by Ulstrup
and Jortner [35(b)]. Effects of frequency changes have been
calculated by Lin [36(a)], by Lagos and Friesner [36(b)], and by
Chan and Page [36(c)].

frequency D-A stretch at 165 cm™' and a high-
frequency TCNE mode at 1551 cm ™', make up
about 60% of the total (internal) reorganization
energy for the ET event (out of 11 internal modes),
lending some credence to the two-internal-mode
approximation of Walker et al. However, in studies
of photoinduced ET in the Ru/Fe mixed-valence
complex, Barbara and co-workers [14] found eight
active modes, with three predominating (at 2104
cm™Y, 603 cm™!, and 270 cm™~*, making up 75%
of the total internal reorganization energy), sug-
gesting that including the internal modes as only
one fast and one slow mode may be an oversim-
plification. On the other hand, rate measurements
of the ET reaction give an estimate [14] of =,
(the half-life of the electron-transfer reaction)
about 50 fs, suggesting that modes of less than
500 cm ™! may not be active in this transition, and
thus two modes might adequately describe the ET.
To compare with the two-(internal)-mode anal-
ysis of Walker er al. [37], we have approximated
the HMB/TCNE and Ru/Fe systems by two modes
each (plus a single solvent mode), and we show
e “FJ(¢t) for each system in Fig. 8. We distribute
the total internal reorganization energy A; between
the two modes with the highest contributions to
A;, according to their relative contributions. Thus,
in the case of the HMB/TCNE charge-transfer
complex, we have approximated 11 modes with
A;=3515 cm ™! by two modes, Aw, =165 cm ™! and
hw,=1551cm ™, with A; =2097 cm ™! and A, =1418
cm™ Y AE =11 600 cm™!. In the case of the Ru/
Fe mixed valence complex, A;=3220 cm™*'; how-
ever, three modes contribute almost equally to 75%
of A, With the understanding that ¢, is on the
order of 50 fs, we approximated the eight modes
of this system by the two modes with the largest
contributions to A; which are greater than 500
cm ™' Aw, =603 cm ™! and Aw,=2104 cm™!, with
A, =1640 cm™?! and A,=1580 cm™!; AE=3000
cm~ !, In addition, we have added a single solvent
mode with fiw;=1 cm™! and A,,;=2300 cm™*.
Comparing Figs. 5 and 8, we observe similar
but distinct behavior. In the case of the HMB/
TCNE system, recurrences are seen in both the
11-mode (Fig. 5(a)) and two-mode (Fig. 8(a)) cases
at similar times, characterized by the slower, 165
cm ™! mode. Similarly, regular recurrences are seen
in the Hupp and Barbara system, but the eight-
mode case (Fig. 5(b)) is dominated by the 270
cm ™! mode, while the two-mode case (Fig. 8(b))
is dominated by the 603 cm~! mode, which results
in recurrences of much higher amplitude at much
shorter times. In both cases, we see that the
additional modes in Fig. 5 reduce the amplitudes
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of the recurrences seen in Fig. 8. In addition,
integrals (over the ranges shown in the figures)
are as follows: Fig. 5(a) vs. Fig. 8(a), 0.272 vs.
0.121 fs, and Fig. 5(b) vs. Fig. 8(b), 4.46 vs. 5.89
fs. The two-(inner-shell)-mode approximation is
clearly inadequate where several modes define the
recurrences (compare Figs. 5(b) and 8(b)); the
other modes (with smaller contributions to the
total reorganization energy) serve to make slight
changes in the amplitude of the recurrences (com-
pare Figs. 5(a) and 8(a)). Note that small con-
tributions to the total reorganization energy equate
with small normal-mode equilibrium displacements
(A= (CM/wn)'?), and the smaller the A,, the less
the overlap of the wavepackets is influenced by
motion in coordinate k in time (as displacements
along coordinate k are small).

Reduced pictures, involving one classical and
one or two quantum degrees of freedom, are
attractive both because they lead to semianalytic
forms for the rate constant [26(b)], and because
they are more easily interpreted than the full
multi-mode quantum treatment. As we have dem-
onstrated here, however, such reduced treatments
can often lead to errors due to oversimplification
of the true energy-flow dynamics.

11. Comments

We have demonstrated a new dynamical analysis
of a slightly generalized non-adiabatic electron
transfer (polaron) model which connects directly
to experiment via resonance Raman studies, or
to theoretical normal-mode analyses. It is related
to, but distinct from, the correlation-function anal-
ysis of Fischer and van Duyne [3-8,11,26]: it views
the electron transfer process from a purely dy-
namical point of view and allows for mode-by-
mode analysis, but in a different manner, allowing
for easy inclusion of effects such as solvent damping
or frequency changes. It is substantially different
from the Marcus—Hush transition-state theory [1,2],
in that nuclear tunneling is included. We have
examined the effects of solvent, temperature, and
frequency changes on the model, as well as a two-
mode approximation method for the vibronic cou-
pling (in Section 10).

In general, in the absence of damping or de-
phasing processes, we observe recurrences (Figs.
2 and 3) whose amplitudes and periods are defined
by the modes with the largest unitless equilibrium
displacements (A,). Inclusion of gap modulation
or solvent modes removes these recurrences and
allows the calculation of rates (Figs. 4,5,9 and 10

and Table 2); the addition of solvent modes with
large reorganizational energies properly includes
the energy-sink effects of the solvent. An exam-
ination of rate vs. AE gives the expected (according
to Marcus-Hush [1,2]) inverted-region effects (Fig.
10). Temperature and frequency change effects
are demonstrated in Figs. 13 and 6 respectively,
and are found to be respectively small (but non-
monotonic and not activated) and minimal. The
observed temperature dependence is similar to
that observed in a small-polaron model [4-8] (weak,
monotonic and non-activated), and is substantially
different from the temperature dependence pre-
dicted by transition-state theories [1,2] (activated),
owing to the inclusion of nuclear tunneling (in
the present model). The approximation of the
many-mode systems described by two (one high-,
one low-frequency) modes is found, in general, to
be inadequate to describe rates, based on a com-
parison with the many-mode systems.

The model hamiltonian involves linear coupling
between the vibrational coordinates and the elec-
tronic occupations [3-8,26]. This treats the inner-
sphere reorganization effects exactly, within a har-
monic approximation. The outer-sphere reorgan-
ization energy, and, more generally, the effects of
the solvent, have been treated using several crude
models. These models include
a. a simple dephasing picture, in which solvent

fluctuations randomly modulate the exoergicity;

b. one-mode or two-mode harmonic approxima-
tions to the solvent coupling [5];

c. assuming that the solvent merely provides a
thermostat, establishing a temperature in the
inner-sphere modes.

More explicit modeling [10,17,18] of the solvent
behavior can be added to our dynamical picture
for the inner-sphere behavior; for example, we
can couple to a molecular dynamics solvent de-
scription [15].

We used our models to calculate rates for the
Hupp and Barbara Ru/Fe charge transfer system
[14] and the Gould and Myers HMB/TCNE system
[13] (indicated in Table 2). Estimations from ex-
perimental results are on the order of 10'* and
10'* s [14,25], respectively. Thus, we are very
close to the measured rate for the Ru/Fe ET
system, while we overestimate the rate for the
HMB/TCNE system by about ten times. It should
be noted that the rate given for the HMB/TCNE
system is from a fluorescence decay measurement,
and is therefore not a “true” thermal rate [25].

It has been suggested that high-frequency modes
(about 3500 cm ') with relatively small equilibrium
displacements (A) may not be apparent in the
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resonance Raman spectra but may significantly
affect the rate. As a test of this hypothesis, a 3500
cm ™! mode was added to the HMB/TCNE +single
(1 cm ") solvent mode system (see Table 2). With
A=0.05 (A=4.4 cm™"), the measured rate was
3.0x 10'? s7!, basically identical to the measured
rate of the HMB/TCNE+1 system without the
high-frequency mode. With A=0.5 (A=440 cm™")
(well within the realm of the resonance Raman
experiment, as many of the 11 modes measured
had A values in the range 0.5-0.6), the measured
rate was 8.5x 10" s~! — a fairly minor change
in the rate, given the size of A. Our conclusion,
therefore, is that high-frequency modes which are
not observed in the resonance Raman spectrum
(e.g. C-H stretches) do not significantly affect the
rate.

This analysis of the simple non-adiabatic polaron
model for ET has proven to be extremely versatile.
Future steps include calculation of rates of optically
induced charge transfer, in which the initial state
is prepared by an optical excitation, addition of
vibrational levels on the bridge state in the su-
perexchange (three-site) model, anharmonic sur-
faces (e.g. Morse potentials), and calculation of
absorption spectra.
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