
10820 J .  Phys. Chem. 1992, 96, 10820-10830 

Energy Relatlonshlps In Optical and Thermal Electron Transfer. Temperature 
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The temperature dependence of the intervalence transfer (IT) band for the transition [(bpy)2ClRu11(pz)Ru111(NH3),]4+ - 
[(bpy),ClR~~~~(pz)Ru~~(NH~),]*+ (pz = pyrazine; bpy = 2,2'-bipyridine) has been studied in CH,OD and in a nitrile solvent 
mixture, The temperature dependences of El12 for the component RU~I'/ '~ couples in this complex were also studied by cyclic 
voltammetry. The temperature dependence of the absorption band, which was quite large, (BE,,/BT) = -10 cm-l K-I in 
CH,OD, p = 0.035 M, was found to be the same, within experimental error, as the temperature dependence of the difference 
between the values for the RuIT1/I1 couples. This agreement provides experimental evidence that the absorption band 
energy includes the free energy change between the initial and final states and not just the change in enthalpy or internal 
energy. This is consistent with a model proposed by Marcus and Sutin for electron-transfer based on free energy surfaces 
despite the inability of the dielectric continuum model to account for the solvent-dependent behavior of this dimer. A quantum 
mechanical model is also found to predict that the absorption band energy should be temperature dependent because the 
band energy depends upon the free energy change. This model is based on potential energy surfaces and harmonic oscillator 
wave functions but includes differences in frequencies and reorganizational energies between the initial and final states, which 
is the crucial feature for the definition of an entropic change. Complications appear in the relationships that exist between 
optical and thermal electron transfer, and they are presented and discussed. 

Introduction 
In mixed-valence complexes, low-energy absorption bands often 

appear whose transitions, eq 1.1 (pz = pyrazine; bpy = 2,2'-bi- 
pyridine; (a) L = NH,; (b) L = pyridine), are the photochemical 

(bpy)2CIfluU(pz)Ru"(NH~),(~)4+-hv_ 

(bpy)2CIRu"(pz)R~11(NH3)4(L)4* (1.1) 
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analogs of the corresponding thermal electron  transfer^.^-^ Sim- 
ilarly, in excited-state decay, e.g., eq 1.2: emission is the analog 
of nonradiative decay. For either, the spectral profiles contain 
information about the analogous nonradiative pro~ess'9~ and have 
been used to calculate absolute or relative rate con~tants .~ .~  

The quantities that are common to the optical and thermal 
procases and allow them to be interrelated are as follows: the 
energy difference between the reactants and products, changes 
in equilibrium displacements and frequencies of the vibrational 
modes, and changes in displacements and frequencies in the 
phonon or librational modes. Basic energy relationships can be 
easily derived based on harmonic potential energy functions as 
illustrated by the onedimensional projection in Figure lA, which 
is drawn with the same force constants assumed for the initial 
and final states.2 The energy difference between the minima of 
the two curves is the internal energy difference, A E O .  The co- 
ordinate, q, pertains to one of the participating normal modes of 
the complete system including both vibrations and librations. The 
reorganizational energy, x, is the energy required to displace the 
coordinates of the reactants from their equilibrium values to the 
equilibrium values of the products without a change in electronic 
state. It is the difference in energy between the minimum of the 
product surface and that point on the surface of the product which 
is aligned vertically above the minimum of the reactant surface, 
as shown in Figure 1A. The reorganizational energy is normally 
partitioned into contributions from the intramolecular (inner- 
sphere) vibrations, xi, and solvent (outer-sphere) contributions, 
x,. The latter arise from vibrations, phonons, librations, and/or 
polarizations in the solvent or surrounding medium. The total 

reorganizational energy is given by x = Xi + x,. 
Optical electron transfer is shown as the vertical transition from 

the minimum of the reactant curve to the product curve in Figure 
1. The energy of this transition, Eop, is readily determined by 
graphical means giving eq 1.3. The activation energy for thermal 

(1.3) Eop = x + AEo 
electron transfer, E th ,  is the difference in energy between the 
minimum of the reactant surface and the point where the product 
and reactant surfaces intersect. This quantity can also be de- 
termined readily by graphical means giving eq l .4. These results 

Eth = E0p2/4x (1.4) 

are correct provided that the force constants for the vibrations 
or librations are the same in both states. Based on thme energy 
relationships, application of time dependent perturbation theory 
or a simple activated complex approach provides an expression 
for the thermal electron-transfer rate constant, eq 1.5. In the result 
from time-dependent perturbation theory the constant C contains 
the electronic coupling matrix element which, in the limit of weak 
electronic coupling between the reactants, can be related to the 
intensity of the absorption bandn8 

k,, = CZ exp(-Eth/kT) = C? exp(-EO;/4kTx) (1.5) 

The scheme used to derive these energy relationships is limited 
in scope, especially since it ignores any effects arising from the 
thermal population of the vibrational or librational modes. More 
rigorous approaches based on a quantum mechanical model and 
time-dependent perturbation theory have been presented.8v1*'2 
With the further assumption of the harmonic oscillator model for 
the vibrational wave functions, it can easily be demonstrated that 
eq 1.3 is still valid if E,, is defined as the maximum of the ab- 
sorption band.8 In an extremely important result, Jortner et al." 
have demonstrated that eqs 1.4 and 1.5 can be obtained as the 
high-temperature, classical limit of the quantum mechanical 
treatment, prwided that there is no change in frequency between 
the vibrational modes of the reactants andproducts. The inclusion 
of thermal population factors does not, in and of itself, alter the 
results of the simple model discussed above. 

There remains a troubling flaw in these results. As written, 
A E O ,  x ,  and Eth are internal energy changes and, since pres- 
sure-volume changes can usually be ignored, they are simply 
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Figure 1. One-dimensional schematic energy diagrams illustrating the 
basic definitions and terms for thermal and optical electron transfer. The 
surfaces are assumed to be parabolic with the parabola on the left rep- 
r e n t i n g  the reactants and the one on the right representing the products. 
The force constants for the reactants and products are taken to be the 
same. Electronic coupling at the intersection region is taken to be small 
and is ignored. A definition of the terms is given in the text. (A) 
Potential energy diagram used for the quantum mechanical approach. 
Energy quantities are enthalpies, and the coordinate q is a composite of 
the normal vibrational modes. (B) Free energy diagram used for the free 
energy surface approach. Energy quantities are free energies, and the 
coordinate m is the extent of electron transfer. 

enthalpic quantities. By inference, E,, would also appear to be 
an enthalpic quantity. In this limited quantum mechanical for- 
mulation, it is not clear what role entropic or free energy con- 
tributions play, and this criticism has been raised in the litera- 
ture!." When changes in the frequencies of the vibrational modes 
between the reactants and products are taken into account, the 
quantities "Ew" and "Elh" derived from the quantum mechanical 
approach become temperature dependent.7.'4Js These energies 
would therefore appear not to be purely enthalpic quantities, but 
a more accurate description of their composition has not been 
derived. 

An alternate approach for relating optical and thermal elec- 
tron-transfer processes has been developed by Marcus and Sutin 
that is based on free energy surfacesO4J6 The foundation for this 
approach is the early, significant work of Marcus that demon- 
strated that the solvation energy of the activated complex (as- 
suming a dielectric continuum model) depends quadratically on 
the extent of charge transfer.I7 The extent of charge transfer, 
which was defined as the reaction coordinate, was assumed to 
remain in equilibrium with the polarization field of the surrounding 
solvent dipoles. With this approach, it was shown that the free 
energy surfaces for the reactants and products were quadratic with 
respect to the reaction coordinate. The results of this analysis 
are represented in the free energy diagram shown in Figure 1 B, 
where AGO, A, and AG* are the free energy analogs of A E O ,  x ,  
and E,, respectively. With the assumption of identical force 
constants for the surfaces of the reactants and products, rela- 
tionships analogous to eqs 1.3-5 can be derived. They are given 
in eqs 1.6-8. These equations are more satisfactory in that they 

(1.6) E,, = X + AGO 

AG* = E,p2/4X (1.7) 

k,, = e exp(-AG*/kT) = C? exp(-Eop2/4kTX) (1.8) 

incorporate free energies (and entropies, by inference). However, 
as was noted in their development and by others since,'* they are 
rigorously correct only when the reactant and product surfaces 
have identical force constants. Since the force constants of the 
reactants and products of an asymmetrical complex such as the 
one shown in eq 1.1 would, in general, not be the same, eqs 1.6-8 
must be approximate solutions. In their application, however they 
are frequently treated as being general relationships. The in- 
corporation of discrete, intramolecular vibrational modes into the 
free energy surface approach has been discussed, including de- 
velopment of the mathematics for frequency changes in the 
quantum  mode^,^'-'^ but the significance of this relative to the 
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enthalpy/free energy question was not addressed nor was the 
relaxation of the basic assumption of identical, parabolic free 
energy surfaces. 

The differences between the quantum mechanical and free 
energy surface approaches need to be resolved, or at least, the 
assumptions that lead to the different results need to be delineated. 
In particular, there appears to be a conflict between these two 
approaches regarding the role of AGO and M0, which experi- 
mentally, can be quite significant. For example, the entropic 
changes that accompany electron transfer within the ion pairs in 
eq 1.9 (py = pyridine, M = Fe, Ru, or Os) are quite large, +40 
eu, which leads to a difference of 12 kcal/mol between AGO and 
AHo (=AEo)  at room temperat~re. '~ It is important to know 

RU(NH~)S(PY)'+IM(CN)~" + Ru(NH3)s(PY)2+,M(CN)63- 
(1.9) 

how these quantities can be derived from Ew and which quantities 
should be used in the expression for the rate constant. As another 
example, it has become common to estimate excited-state redox 
potentials by adding or subtracting such diverse quantities as AEo 
(the energy difference between the minima of the excited- and 
ground-state energy surfaces neglecting zero-point energy dif- 
ferences) or E$, (the emission band maximum) to or from the 
appropriate ground-state potential.*O Since redox potentials 
provide a measure of free energy differences, these equations could 
only possibly be exact if AEo were derived rigorously from the 
spectroscopic data or if E,, were a free energy change. 

Another point of interest is to develop a more complete model 
of the solvent and the role of entropy in electron transfer and 
nonradiative decay. For many mixed-valence systems, the di- 
electric continuum model developed by Marcus appears to describe 
adequately the role of the solvent, particularly for the optical 
p roces~ .~*~.~ '  For the ligand-bridged complex shown in eq 1.1 b 
(L = pyridine), however, the optical transition shows a much 
stronger dependence on the solvent and the transition energy 
correlates very well with the donor number (DN) of the 
an empirical scale developed by Gutmann to describe the ability 
of a solvent to act as an electron pair donor (hydrogen-bond 
accept~r)?~ This has been attributed to strong hydrogen-bonding 
interactions between the NH3 ligands and the solvent. It was 
further demonstrated that both AGO and the reorganizational 
energy of the complex depended upon DN. Another interesting 
aspect of this behavior is the existence of preferential solvation 
effects in mixed solvents.24 For other mixed-valence complexes 
where the dielectric continuum model appears to be appropriate 
for most solvents, the behavior in water or other strongly hy- 
drogen-bonding solvents can be anomalous.25 The effects of re- 
lated, specific solute-solvent interactions on charge-transfer 
transition energies are well known.26 

A related effect comes from the work of Weaver et al., where 
numerous entropies of reaction for electron transfer between metal 
complexes in solution and between metal complexes and an 
electrode have been m e a s ~ r e d . ' ~ , ~ ~ * ~ *  One general conclusion of 
that work is that entropies of reaction tend to be twice as large 
as those predicted by the Marcus model which is based on di- 
electric continuum theory.I8 Further, it was found that the 
contribution to the entropic change by a particular solvent de- 
pended on the Gutmann acceptor number (AN) of the solvent,23 
a quantity that measures the ability of the solvent to act as an 
electron pair acceptor (hydrogen-bond donor). This contribution 
was signifcant even when the electroactive solute had no apparent 
basis for forming strong hydrogen bonds (e.g., Ru(bpy)?+I2+). 
Since a large portion of the entropic change for many electron- 
transfer reactions arises from solvent contributions, this implies 
that the dielectric continuum model does not provide a complete 
description of the role of the solvent. This is an important result 
since it requires that a more complicated structural model for the 
solvent be devised which should include the discrete libration- 
al-orientation characteristics of the solvent, especially of those 
modes involved in hydrogen bonding. 

To help address these questions and seeming discrepancies, we 
have adopted a simultaneous experimental and theoretical a p  
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proach. Experimentally, the temperature dependence of E,, for 
the unsymmetrical mixed-valence complex shown in eq l.la (L 
= NH3) has been measured. Because of the coordination asym- 
metry at the two sites and the electrochemical results of Weaver 
et al. on complexes that are structurally related,'8~z7 a considerable 
entropic change is expected to exist between the initial and final 
states. This entropic change has been estimated by tempera- 
ture-dependent electrochemical measurements. If the energy 
quantity contained within E,, is a free energy difference, a sub- 
stantial temperature dependence of Eop is predicted to exist with 
the result that &E,, f 6T = -ASo. As discussed above, this result 
should be independent of the assumption of a dielectric continuum 
model for the solvent. 
On the theoretical side, we have reexamined the formulations 

for optical bandshapes and thermal electron-transfer rate constants 
based on a quantum mechanical approach where frequency 
changes are taken into account. This approach necessitates using 
different force constants for the potential energy surfaces of the 
reactants and products so that the results can be as general as 
possible. With this more general approach, we are able to dem- 
onstrate that the quantum mechanical treatment also predicts that 
E,, should vary with AGO in the classical limit, not simply with 
AEo. This allows us to show that a certain level of agreement 
exists between the experimental results and models based either 
on a quantum mechanical approach or on free energy surfaces. 
However, the quantum mechanical treatment demonstrates certain 
limitations in the formulations relating optical and thermal electron 
transfer, particularly in systems with large entropic changes. The 
implications of these results for the calculation of excited-state 
redox potentials and nonradiative decay rate constants will be 
discussed elsewhere. 

Experimental Section 
Materials. Acetonitrile (Burdick and Jackson), methylene 

chloride (EM Science), methanol (Burdick and Jackson), meth- 
anol-d (Aldrich), and bromine (Fisher, ACS Reagent Grade) were 
all used as received. Propionitrile and butyronitrile (Aldrich, Gold 
Label) were purified by heating 50 mL of the solvent with 0.4 
g of Na,CO, and 0.6 g of KMnO, at -70 OC for 90 min. If the 
purple color of the permanganate had disappeared, another 0.6 
g of KMn0, was added, and the mixture was heated for another 
60 min. The solvent was then decanted and distilled under reduced 
pressure at or near room temperature. The middle 50% of the 
distillate was collected, stored under argon, and used within 5 days. 
Tetra-n-butylammonium hexafluorophosphate, [N(n-Bu),] (PF,), 
was prepared from [N(n-Bu),]Br (Aldrich) and HPF6 (Aldrich) 
and recrystallized three times from ethanol. Tetraethylammonium 
perchlorate [NEt4](C104), was prepared from [NEt4]Cl (Aldrich) 
and HClO, (Aldrich) and recrystallized three times from ethanol. 

Complexes. The salts [(bpy) ,ClRu(pz) Ru(NH3) ( PF,) 3,29 
[ ( NH3) S R ~ (  4,4'- bpy)Ru(NH3) (PF,), (4,4'-bpy = 4,4'- bi- 

and [(bpy)zC1Ru(pz)RuC1(bpy)z](PF6)230 were 
synthesized as described previously. The mixed-valence forms 
of the complexes were generated electrochemically as follows: 15 
mg of the reduced Ru"-Ru" form of the complex was added to 
the center compartment of a three-compartment cell which was 
charged with 0.1 M [N(n-Bu),](PF,) in acetonitrile. A sufficiently 
positive potential (+O.S&l.O V versus SSCE to oxidize both Ru 
centers was applied to the cell until the current had reached <3% 
of its original value and the color change indicated that the ox- 
idation was essentially complete. The solution containing the 
RuliLRuill form of the complex was removed by pipette from the 
cell compartment and added to another 15 mg of the RuJ1-RuJJ 
form. The solution was stirred for 1 min and added to 50 mL 
of stirring CHZCl2. The desired complex precipitated from solution 
as the PF6- salt while the supporting electrolyte remained in 
solution. The mixed-valence salt was isolated by filtration, washed 
with CHZCl2, and dried in vacuo. Yields were close to quantitative, 
and the electronic spectral characteristics of the samples matched 
those of mixed-valence samples which had been prepared by redox 
titration. The mixed-valence forms of each were also prepared 
in situ by two methods. In the first, 0.5 equiv of Brz was added 

to a solution containing the RulI-RuI1 form of the complex. In 
the second, the RU~I -RU~~ form of the complex was oxidized by 
1 equiv with controlled potential electrolysis. The electronic 
spectral properties of the samples were essentially the same as 
those of the isolated mixed-valence complexes. 

Measurements. Electronic spectra were recorded on a Cary 
171 spectrophotometer. Temperature control of the sample cell 
was achieved by using an Oxford Instruments DN1704 liquid 
nitrogen dewar and No. 3120 temperature controller. The esti- 
mated accuracy of the temperature readout was f l  OC. The 
reference cell was at room temperature. Solvent blank experiments 
at the lowest and highest temperatures confirmed that the tem- 
perature mismatch between the cells contributed negligibly to the 
baseline absorbance. 

Variable temperature redox potential measurements were ob 
tained by both cyclic voltammetry and differential pulse voltam- 
metry by using a nonisothermal cell arrangement." The accuracy 
of the temperature measurement of the working compartment was 
i0.5 OC. The working electrode was a gold wire. The reference 
was a saturated sodium calomel electrode (SSCE). The solvent 
was methanol with 35 mM [NEt4](C1O4). The low ionic strength 
was required because of the limited solubility of the C10, salt 
of the complex. Controlled potential electrolysis WBS performed 
by using a Princeton Applied Research Model 173 potentiostat 
with current versus time traces recorded on a Hewlett-Packard 
Model 7015B X-Y recorder. 

Results 
In order to test whether eq 1.3 or 1.6 is valid, it is useful to 

find cases where the entropic difference between the states in- 
terrelated by the optical transition is maximized so that there is 
an appreciable difference between AGO and AH". In solution, 
PWO = AEo because the volume change is negligible. The tem- 
perature dependence of AGO, and therefore the entropic change, 
can be determined by variable temperature electrochemical 
measurements since 6AG0/6T = -ASo. Provided that the tem- 
perature dependence of the reorganizational energy (A or x )  can 
also be measured, a study of the temperature dependence of Eq 
should determine whether eq 1.3 or 1.6 is more appropriate. If 
eq 1.6 is correct, E,, should show the same temperature depen- 
dence as AGO, with SE,,/GT = -ASo. If eq 1.3 is correct, Eop 
should show very little dependence on temperature. 

There is a considerable redox asymmetry in the complex in eq 
l . l a  (L = NHJ. It is induced by the difference in ligand en- 
vironments and how those ligands interact with the solvent. From 
the known properties of complexes that are structurally related, 
the potential difference between the two types of couples, eqs 2.1 
and 2.2, is considerable as is the manner in which the potentials 
respond to changes in temperat~re.~' The RU'I(NH~)~*+ site is 

(bpy)zClRu111(pz)Ru111(NH3)Ss+ + e- - 
(bpy ) zCIRuil( pz) Ru"'( NH3) s4+ (2.1 ) 

(bpy),ClR~~~(pz)Ru~~~(NH,)~~+ + e- - 
the more strongly reducing of the two. It is oxidized at a lower 
potential as suggested by eq 2.2. The free energy change for eq 
1.1 can be estimated from the difference in redox potentials as, 
AGO (eV) = -hEll2 = [E,/,(2.1) - E,/z(2.2)]. In this procedure 
the potential for eq 2.1 is used as an approximation for the po- 
tential of the corresponding Ru(III/II) couple in the higher energy 
oxidation state isomer, eq 2.3. This is not entirely appropriate 

(bpy)zClRuJi1(pz)Ru11(NH3),4+ + e- - 
because in this couple, reduction of Ru(II1) adjacent to 
RU~~' (NH,)~  occurs rather than reduction of Ru(II1) adjacent to 
RUII(NH~)~.  The potentials for eqs 2.1 and 2.3 are expected to 
differ because of differences in electrostatic and electronic in- 
teraction terms. However, from the work of Schmitz on sym- 
metrical, ligand-bridged complexes, these terms are expected to 

(~~~)ZCIRU"(~Z)RU~~(NH~)~~+ (2.2) 

(~~~)ZCIRU"(~Z)RU~~(NH,)S~+ (2.3) 
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TABLE I: Half-Wave Potentials from Cyclic a d  Differential Pulse 
Voltammetry as a Funetioll of Temperature for the Couples 
[(bpy)2ClRu(pz)Ru(NH3)5P+/r+/H in Methanol with 35 mM 
[NEt4](CI04) as the Supportiug Electrolyte 

T ("c) Ein(5+/4+) T ("c)  Ein(4+/3+) 
-5.0 889 -2.5 410 
-2.0 890 1.5 412 

0.5 89 1 7.0 423 
1.5 89 1 17.5 435 
5.0 893 25.0 442 
7.0 892 36.0 454 

10.0 895 44.5 467 
17.0 896 

"The potentials, which were measured with a nonisothermal cell ar- 
rangement, are in mV versus an ambient temperature SSCE reference 
electrode. 

goow 
880 1 I 

F 
460 A 

420tJ 400 . l o  0 1 0  2 0  3 0  4 0  5 0  

T ("C) 
Figure 2. Temperature dependence of El/? values (versus SSCE) for 
[(bpy),ClRu(pz)R~(NHJ~]~+ in CHoOD with mM [Et4N][PF ] for the 
following couples: (A) [(b~y)2C1Ru'1'/''(pz)Ru'1'(NHo)s]5+~4+. (B) 
[ (~~~),CIRU"(~Z)RU"'/''(NH~)~]~+/~+. 

be temperature independent.32 Therefore, the temperature de- 
pendence of the difference in redox potentials corresponding to 
eqs 2.1 and 2.2 should be the same as those for the redox isom- 
erization reaction in eq 1.la. 

The temperature dependences of the two redox couples in 
methanol were measured versus a room temperature SSCE and 
those data are given in Table I. Plots of the data are shown in 
Figure 2A and for reactions 2.1 and 2.2, respectively. The po- 
tentials of both couples exhibit a linear dependence on T with the 
slopes being 0.33 (fO.10) and 1.20 (fO.lO) mV/OC for eqs 2.1 
and 2.2, respectively. The much greater sensitivity to T for the 
R U ( N H ~ ) ~  based Ru(III/II) couple is expected based on studies 
on related It arises from the strong interactions of 
the ammine ligands with the solvent. The dependence of the 
difference in redox potentials ( M I  2) on Tis also linear. From 
the experimental data, b ( M I p ) / d =  -0.9 f 0.2 mV/"C. This 
is equivalent to a value of ASo' = +21 f 5 eu ( p  = 0.035 M) 
for eq 1.la. 

The temperature dependence of the optical transition in eq 1. la 
was examined in both CH30D and in 4258 (v/v) propionitrile/ 
n-butyronitrile solutions. Typical spectra are shown in Figure 3. 
They reveal that the peak maximum (Eop) is quite strongly tem- 
perature dependent. The spectra in CH30D were examined under 
three sets of conditions: (a) The isolated mixed-valence complex 
was added to pure solvent. (b) The r e d u d  complex (Ru'LRuII) 
was added to the solvent and oxidized by the addition of 0.5 equiv 
of Brz. (c) The reduced complex was added to CH,OD containing 
35 mM [N(n-Bu),l(PF6) and oxidized electrochemically to the 
mixed-valence form. The data for the variation of Eop with T 
under these three conditions are collected in Table 11. Plots of 
Eop versus T for the data are shown in Figure 4A. For each set 
of data Eop varies linearly with T although the correlations are 
independent of one another. The slopes of the linear least squares 
fits are -12, -10, and -8 (f2) cm-I/OC for a, b, and c, respectively. 
These are equivalent to entropic changes of 34,29, and 24 (f6) 

W 
u z < 

Q 0 m 
m 

!? 

7 e 9 I0 I I  12 13 

WAVENUMBER 10-3 
Figure 3. Temperature dependence of the intervalence transfer band in 
[ (bpy),ClRu"(pz)R~~~'(NH~)~]~+ in 7:9 propionitrile/butyronitrile at (a) 
296 K, (b) 258 K, and (c) 209 K. 

13 
A 

1 7 0  2 2 0  270 320 

T ( W  
Figure 4. Plot of Eo,, versus temperature for [(bpy)2C1Ru'1(pz)Ru111- 
(NH3)J4+ (A) in CHIOD and (B) in 7:9 propionitrile/butyronitrile. 
Data points are for the following: 0 = mixed-valence complex in the 
solvent or solvent mixture; = mixed-valence complex generated in 
solution by the addition of Br,; 0 = mixed-valence complex generated 
by electrochemical oxidation in the presence of 25 mM [N(n-Bu),][PF,]. 
The drawn lines are the linear least squares best fits. 

TABLE II: Temperature Dependence of the Band Maximum (E ) of 
the Intenaleace Transfer Band of ( b p y ) , C 1 R u " ( p ~ ) R u ~ ' ( N H ~ ) ~ ~ + ~ ~  
CHJOD under Various Conditions 

EO: EO: Eo$ 
T(K) (10) cm-I) T (K) (lo3 cm-l) T (K) (lo3 cm-l) 
295 10.32 298 10.88 294 10.94 
260 10.88 294 10.94 274 11.23 
234 11.32 275 11.20 256 11.39 
209 11.41 255 11.30 238 11.61 
184 11.68 234 11.52 220 11.68 

215 11.60 202 11.79 
198 11.95 184 11.90 
179 12.16 

a Mixed-valence complex isolated and added to neat solvent. 
bMixed-valence complex generated in situ from the 3+ complex by the 
addition of Br2. CMixed-valence complex generated in situ from the 
3+ complex electrochemically with 25 mM [N(n-Bu),](PF6) present. 

eu, respectively. The spectra in 4258 (v/v) propionitrile/bu- 
tyronitrile were examined under conditions a and b. These data 
are presented in Table 111, and plots are shown in Figure 4B. 
Again, two independent linear correlations were found with slopes 
of -13 and -7 (f2) cm-'/OC for a and b, respectively. These 
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The temperature dependences of the reorganizational energies 
for the reactions in eqs 2.4 and 2.5 arise from contributions by 
each of the two subunits. From the average of the two, the 
temperature dependence of the reorganizational energy for eq 1 .la 
can be estimated to be -1 (f2) cm-'/OC, which corresponds to 
an entropic change of 3 (f6) eu. This is only an approximate 
value because the reorganizational energies of each subunit depend, 
somewhat, on the complex that is attached to the other end of 
the bridge. 

From eq 1.6, it is predicted that the temperature dependence 
of E, should be equal to the sum of the temperature dependences 
of AGO and the reorganizational energy: 

(2.6) 

The sum of these (21 (f5) in CH30D at M = 0.035 M and 3 (f6) 
eu in the nitrile mixture, respectively) is within experimental error 
of (SEop/ST) = 29 f 4 eu for eq 1.la (CH30D at p = 0.025 M). 
Although the spectral data were acquired in different solvents, 
the errors resulting for temperature-dependent studies in these 
different solvents should be small. 

(SE,,/GT) = (6AGo/6T) + ( 6 A / 6 T )  

Theory 
The experimental results suggest that E,, contains the free 

energy quantity AGO as in eq 1.6 rather than AEo as in eq 1.3. 
However, as was noted above, eq 1.3 was derived within the 
harmonic oscillator approximation with no frequency changes 
included. When frequency changes are taken into account, the 
formulations of absorption bandshapes give slightly different 
results. These will now be examined to determine if they are 
consistent with eq 1.6 as the results of the experimental work imply 
that they should be. 

The methods for analyzing optical bandshapes are based on 
the use of generating functions developed by Kubo' and the method 
of moments developed by Lax." The results for systems involving 
frequency changes have been presented by several a ~ t h o r s , 8 J ~ * ~ ~  
and these are recapitulated here in a consistent notation. The 
Franck-Condon intensity distribution of an absorption band, I(@, 
can be expressed as a Fourier transform integral as shown in eq 
3.1, 

TABLE III: Temperature Dependence of the Band Maximum (E,) 
of the Intervalence Transfer Band of [ (bpy),CIRull(pz)Ruil'(NH,)Srt 
in 4258 ( v / v )  n-Propionltrile/o-Butyronitrile 

EO: E O :  

T (K) (10' cm-I) T (K) ( io3 cm-]) 
296 9.53 301 10.82 
258 10.00 294 10.82 
234 10.30 252 11.14 
209 10.57 234 1 1.34 
184 10.95 212 11.40 

20 1 11.54 

a Mixed-valence complex isolated and added to neat solution. 
bMixed-valence complex generated in situ from the 3+ complex by the 
addition of Br,. 

9.0 - 
r 

8 5  -+---I fJ 
D 

8.0 - 4 
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Figure 5. Plot of Eop versus temperature in 7:9 propionitrile/butyronitrile 
for [(NH3)sRu11'(4,4'-bpy)Ru11(NH,),1'+ (0) and for [(bpy),CIRu"- 
(PZ) R ~ " C ~ ( ~ P Y  )21 3t (0). 

correspond to entropic changes of 36 and 21 (f6) eu, respectively. 
Although a part of the analysis remains to be presented, the 

considerable temperature dependence of Eop clearly suggests a 
strong entropic component. Further, this contribution depends 
upon the counterions and the ionic strength of the solution. The 
counterion effect is particularly striking in comparing conditions 
a and b, which corresponds to replacing one of the four PF,- 
counterions by Br-. This testifies to the strong ion-pairing effects 
typically found for the smaller halide ions compared to bulkier 
counterions such as PF6-. The reduction in the magnitude of the 
entropic change in this case may have two somewhat related 
origins. First, tight ion pairing between the counterion and 
complex effectively increases the size of the complex by displacing 
some of the solvent molecules from the first solvent shell. Second, 
tight ion pairing decreases the effective charge of the complex. 
Both of these effects have been demonstrated to result in a decrease 
in the magnitude of the entropic changes associated with elec- 
tron-transfer  reaction^.^' The increase in ionic strength has the 
same effect because it also results in increased ion pairing. 

In order to complete the analysis, the temperature dependence 
of the reorganizational energy must also be measured. It can be 
obtained by temperature dependent measurements on the com- 
ponent, symmetrical complexes, eqs 2.4 and 2.5. For a sym- 

hv 
(NH3)5RuU(4,4'-bpy)Ru"'(NH3)52+- 

(NH3)5R~1'1(4,4'-bpy)R~u(NH3)55+ (2.4) 

N x N  

(4,4'-bpy) 

hv 

[(bpy)pCI Ru"'(pz) Ru"Cl(bpy)d3+ (2,5) 

metrical complex, E,, should be equal to the reorganizational 
energy (A or x ) .  Plots of E, versus Tin the nitrile mixture are 
shown in Figure 5 .  The slopes of the least squares correlations 
in Figure 5 are +1 ( f l )  cm-'/OC for eq 2.4 and -2 ( f l )  cm-'/OC 
for eq 2.5. When converted to entropic units, these correspond 
to changes of -3 (f3) and +5 (f3) eu for eqs 2.4 and 2.5, 
respectively. 

[(bpY)*CIRuU(Pz)Ru"'Cl(bpY)*I3+ - 

I(E) = (d2/2rh) lmexp[f l t )  -m + [AE - E] 

where it is assumed that the transition moment integral, dZ, is 
independent of energy. Here, AE is the difference in energy 
between the minima of the excited- and ground-state potential 
energy surfaces and At) is the generating function for the vi- 
brational wave functions. For harmonic oscillators with frequency 
changes at nonzero temperatures, the definition of At) is given 
in eqs 3.2-4. 

wjz + wj'2 
2 cosh ( irwj  + a,) cosh (itwj') - 

sinh ( i tw ,  + Pj) sinh (i twj')  - 2 1 /  [4 sinh2 ( P j / 2 ) ]  (3.3) 
J /  

-(wjwj'/ h )  (Aqj) 
B j ( t )  = (3.4) 

irwj + pj 
wj coth [ 7 1  - wj' coth [ y ] 

-(wjwj'/ h )  (Aqj) 
B j ( t )  = (3.4) 

irwj + pj 
wj coth [ 7 1  - wj' coth [ y ] 

Here, wj and wjl are the frequencies of modej in the initial and 
final states, respectively, Aqj is the displacement between the 
minima of the initial- and final-state surfaces along the mass- 
weighted normal coordinatej (units of g1/2cm), and 8, = hwj/kT. 
The term -r2t2 on the right-hand side of eq 3.2 arises from 
representing the individual vibronic peaks as Gaussians whose full 
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zero for a symmetrical bandshape. In the high-temperature, 
classical limit ( hwj << kT),  Mg is not exactly zero. Rather, the 
second half of the second term in the right-hand side of eq 3.7 
persists to give eq 3.1 1 in the classical limit. Thus, in order to 
obtain the uclassicalw Gaussian bandshape the additional as- 
sumption that haj << hwj is required. This seemingly minor point 
has significant ramifications for later arguments. 

P q  4 
Figure 6. Potential energy diagram for the case where the reactant and 
product surfaces have different force constants. The reorganizational 
energy of the surface for the reactant is x while that for the surface of 
the product is x’. The vertical transition from the minimum of the 
reactant surface to the product surface has the energy Ai? + x’. 

width at half-maximum (fwhm) is given by fwhm = hI’(16 In 

The various moments of the absorption band can be defined 
in terms of the derivatives of the generating functionf, and the 
results for the first three moments are given in eqs 3.5-7. The 

2)1/2. 

()‘z)F(hQj)z cothZ ( P j / 2 )  + 2 h 2 P  (3.6) 

M3 = ihY(0)  = C(hQj )*  coth ( P j / 2 ) [ h w j  + 
i 

hQj coth2 ( P j / 2 ) ]  + Z~j’(hw,’)~ 
J 

(3.7) 
quantitiesf(O),j”(O), andf”’(0) are the values of the fmt, second, 
and third derivatives, respectively, off(t) evaluated at t = 0. The 
definitions of x,’ and Qj are given in eqs 3.8 and 3.9, respectively. 

xj’ (YA(wj’)z(Aqj)z (3.8) 

(3.9) 

x is the reorganizational energy (defined above) in mode j along 
d e  flnul-stare porentfal surface. The reorganizational energy in 
mode j along the potential surface of the initial state, xi, would 
differ by having w; in place of ( w ; ) ~ ;  i.e., the two quantities are 
not equal unless wj = wj’. These relationships are illustrated in 
Figure 6. The quantity Q, is seen to be nonzero for wj # 0; and 
can be either positive or negative depending upon whether a,’ is 
larger or smaller than wi. 

The relationship of these moments to the absorption bandshape 
is straightforward. The first moment (MI) is the average energy 
(mean) of the bandshape, the second moment (MJ is the standard 
deviation (width) of the bandshape about its mean, and the third 
moment (M3) measures the degree of skewing of the distribution 
about the mean. In room temperature, fluid solutions, most 
absorption bands for metal complexes tend toward Gaussian 
shapes. For such distributions, more direct interpretations of the 
band moments arise. MI becomes equivalent to the band max- 
imum (Eq), and Mz can be related to the full width at half- 
maximum (AvII z )  as shown in eq 3.10. The degree of skewing 

MZ = ( A ~ I / Z ) ~ / ( ~  In 2) (3.10) 

of the band is measured by the ratio (M32/Mz3) l / z  which goes to 

As has been noted p r e v i o u ~ l y , ~ ~ ~ ~ ~ ’ - ~ ~  eq 3.5 reduces to eq 1.3 
for the case of no changes in frequency between the initial and 
final states ( Q j  = 0) in the classical limit. For the case where 
frequency changes do occur (Qj  # 0), eq 3.5 predicts that Fop 
(=MI) will be temperature dependent and that eq 1.3 is not, in 
general, correct. Since it has been demonstrated here on ex- 
perimental grounds that E, should be related to AGO, there is 
an implication that the last term on the right-hand side of eq 3.5 
(which contains the temperature dependence) should be related 
to the entropic change. 

The entropic content of an harmonic oscillator vibrational mode 
is readily definedgs and can be rewritten in terms of hyperbolic 
trigonometric functions as shown in eq 3.12 where bj = hwj/kT,  
as before. With some mathematical manipulations, the change 

S j / k  = ( P j / 2 )  coth ( P j / 2 )  - In [2  sinh ( P j / 2 ) ]  (3.12) 

in entropy in a particular vibrational mode (AS.) that results 
because of a change in frequency can be expressed as in eq 3.13, 
where 6,’ = hwj’/kT and Awj = w,’ - wj.  

M j / k  = (Pj’/2) coth (Pj’/2) - ( P j / 2 )  coth (P j /2 )  - 
In [cosh ( h A w j / 2 k T ) ]  - 

In [ l  + tanh ( h A w j / 2 k T )  coth (Oj/2)3 (3.13) 

For the high-temperature limit (ha; and hwj << kT)  with small 
frequency changes (Awj << w,’ and wj ) ,  it is found that the first 
two terms on the right-hand side of eq 3.13 almost exactly cancel 
and the third term is quite small. Only the fourth term on the 
right-hand side of eq 3.13 is of any consequence. That term can 
be further simplified with the approximations tanh ( x )  = x and 
In (1 + x )  - x for small x to give the result shown in eq 3.14. 

A S j / k  = - (hAwj/ZkT) coth ( @ , / 2 )  (3.14) 

Finally, since Qj - Awj for small Awl the desired relationship 
between entropy and the third term on the right-hand side of eq 
3.5 is accurately expressed by eq 3.15. 

TAS 4!4.)FhQj coth (B j /2 )  (3.15) 

The physical significance of this term can be made more 
transparent by including the high-temperature limit of coth 
(hwj /2kT)  - 2kT/hwj  in eq 3.14 to give the result in eq 3.16. 

TAS - k T C  - (3.16) 

This shows that the entropic change in a particular vibrational 
mode is proportional to the relative frequency change in that mode. 
If the frequency of the mode increases upon change of electronic 
state, its contribution to the entropic change is negative and vice 
versa. This result is obtained because the increased vibrational 
spacing decreases the number of vibrational states that are 
thermally accessible at a particular temperature. It is interesting 
to note that a proper combination of modes, some increasing and 
some decreasing in frequency, could result in no net entropic 
change despite large changes in individual frequencies. 

Give the approximation that Eo, = MI, eqs 3.5 and 3.15 give 
the result shown in eq 3.17. Since there should be negligible 

h Awj 
j h ~ ,  

E,, hEo + Exj - T U o  = AGO+ Exj (3.17) 
J J 

pressurevolume work, AEo = AH” and AGO = AEo - T U o  so 
that a linear relationship between EOD and AGO exists as shown 
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0.3  

TABLE I V  Comparison between the Exact Entropic C h g e  (AS)  
Calculated by using Eq 3.13 and the Two Approximate Entropic 
Changes Calculated by using Eq 3.14 (AS,,) and Eq 3.15 (AS,) for 
Various Combinations of Vibrational sprcings at kT = 200 cm-’ 

hw (cm-I) hw’(cm-’) ASIk ASh,lk ASn/k 
30 15 0.692 0.501 0.376 
30 21 0.356 0.301 0.255 
30 27 0.105 0.100 0.095 
30 33 -0.095 -0.100 -0.105 
30 39 -0.262 -0.301 -0.346 
30 45 -0.404 -0.501 -0.626 
300 150 0.627 0.590 0.443 
300 210 0.313 0.354 0.301 
300 270 0.089 0.118 0.112 
3 00 330 -0.078 -0.118 -0.124 
300 390 -0.206 -0.354 -0.407 
300 450 -0,307 -0.590 -0.738 

in eq 3.17. It should be recalled that the approximation that Eop 
J M I  relied on M3 being small. This in turn required that hQ, 
<< hw, which also necessitates small entropic changes. This is 
a noteworthy limitation on the results of the analysis. There is 
an additional, significant difference between eqs 1.6 and 3.17. 
Equation 3.17 only involves the enthalpic reorganizational energy 
(x), which has been defined relative to the potential energy surface, 
whereas eq 1.6 involves the reorganizationalfree energy (A). This 
quantity has yet to be defined in the present context. These points 
will be discussed in more detail below. The conclusion that we 
wish to emphasize here is that, starting with simple, tempera- 
ture-independent potential energy surfaces and by using the 
quantum mechanical approach, an expression can be derived in 
a direct manner which involves free energies and not just en- 
thalpies. This shows that this approach is more general than 
previous criticisms have allowed. 

The validity of the approximations used to derive eq 3.1 5 are 
illustrated by the results of calculations presented in Table IV 
and by the plots in Figure 7. In the plots, the exact result for 
the entropic change calculated by using eq 3.13 (AS) is compared 
with the results calculated by using the approximate forms shown 
in eq 3.14 (ASh) and eq 3.15 (ASn) over the range hw = 1-loo0 
cm-l for kT = 200 cm-I. Selected calculated values are presented 
in Table IV. Four sets of curves are shown in the figure for values 
of Aw/o = -0.3, -0.1, +0.1, and +0.3 from top to bottom, re- 
spectively. 

The first noteworthy point to emerge from the comparisons is 
that the results for hw = 100 cm-’ are indistinguishable from those 
for hw = 1 cm-I. This demonstrates the range of modes that can 
be treated “classically” in this respect. Even the greatly simplified 
result calculated by using eq 3.16 is in good agreement for hw 
I 100 cm-]. It is not until hw > 300 cm-I that the thermal 
population of vibrationally excited states is sufficiently small that 
the entropic contribution is severely diminished by thermal factors. 
A second point is that the two approximate formulas are in ex- 
cellent agreement with the exact result for Aw/w = f0.1 and ho 
< 300 cm-l. There is a marked divergence between the two results 
for hw > 300 cm-I. This is of little concern since the entropic 
contributions from such modes are negligible. The level of 
agreement is much less satisfactory for larger relative changes 
in frequency. In  the case of Aw/w = h0.3, for example, eq 3.14 
is in error by 15-20% and eq 3.15 is in error by 30% in representing 
the entropic changes. This is a point of concern since it is not 
known what the magnitudes are for frequency changes (or effective 
changes) in the librational or phonon modes that accompany 
electron transfer. We suspect that, in most cases (particularly 
for inner-sphere modes and solvent modes involving hydrogen- 
bonding or strong polar interactions), these will be less than 30% 
but that exceptions will certainly arise. The quantum mechanical 
treatment shows that eq 3.17 is approximately true, probably to 
a good level of accuracy. However, the exact equality that is 
obtained in the free energy surface approach does not emerge, 
at least directly, at this level of treatment. 

The formulation of the thermal electron-transfer rate constant 
by this approach involves essentially the same mathematics.7**J’JZ 

1..  
//’ 

,<... 
I ............................................ y _ _ _ _ _ _ _ _ _ _ _ _  - . 

0.1 

-0.5 I ’ ‘ ” @ ‘ ‘ ‘ I  - I - - - -  

1 1 0  100 l o o 0  

+I o (cni’) 
Figure 7. Comparison of calculated entropic changes as a function of 
frequency for kT = 200 cm-I. Results are shown for the exact entropic 
change, AS, calculated by using eq 3.13 (-), the first approximate 
entropic change, ASh, calculated by using eq 3.14 (---), and the second 
approximate entropic change, ASn, calculated by using eq 3.15 (-a). Four 
sets of three curves are shown which correspond, from top to bottom, to 
frequency changes of -30%, -lo%, +lo%, and +30%, respectively. 

The rate equation can be expressed by the Fourier transform 
integral shown in eq 3.18 

(3.18) k,, = ~ ~ - e x p ~ r )  - ithE/h] dt 

where k, is the thermal electron transfer rate constant, V contains 
the electronic coupling matrix element (assumed to be independent 
of energy and coordinates), and At) is the generating function 
defined in eqs 3.2-4. Although the exact integral can be readily 
evaluated by numerical techniques, it is useful to obtain an ap- 
proximate formulation. For this, the Taylor series expansion for 
At) about t = 0 as shown in eq 3.19 is utilized, where the first 
three derivatives were defined in eqs 3.5-7. By neglecting terms 

vz - 

At) = f ( 0 )  + f’(0)t + f n ( 0 ) t 2 / 2  + fr’,(0)r3/6 + ... (3.19) 
of t3 and higher orders (which is the high-temperature, classical 
approximation with the additional constraint that hQj << hwj so 
that M3 is sufficiently small), the integral can be solved in closed 
form giving the result shown in eq 3.20. (The saddle point method 

k,, = v’ ( - L ) ‘ ” e x p [  [M - ihf’(0)l2 ] = 
h htf”(0) 2htf”(O) - - ( 2 ) 1 J z  exp[ -i.;] [MI 1 (3.20) 

h M2 
of ref 11 can also be used to obtain the same result, but the 
mathematics are more tedious.) The thermal rate constant is 
found to be a simple function of the band moments of the optical 
process under these approximations. As noted above, MI and Mz 
can be related to the band maximum (Eop) and full width at 
half-maximum (AP, ,~ )  in the high-temperature, classical limit. 
The resulting relationship between the optical and thermal pro- 
cesses is given in eq 3.21. This simple relationship between optical 
and thermal parameters has been derived previously by several 
workers by using different approaches. 

It is desirable to write this formulation in terms of thermo- 
dynamic functions as was previously done for Eop (eq 3.17). This 
requires deriving a thermodynamic expression for Mz (eq 3.6), 
which cannot be achieved as cleanly as it could for Eop. First, 
it must be assumed that the high-temperature limit applies 50 that 
coth (@j/2) J 2 kT/hw which leads to eq 3.22 To simplify 

(3.22) 
(hWj’)Z (hoj)’ + 2kTC kT - 

Mz = 2kTCxj’- J ( h W j ) 2  i (hwj)’ 
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further, it must first be assumed that ~ ( A w l / w j ) z  << C(xr/kT) 
so that the second term on the right-hand side can be negfected. 
This condition fails for certain vibrational modes for which xi’ 
<< kT, but the summation Over all vibrational modes makes it very 
likely that this relationship holds in general. It must also be 
assumed that hw//ho, - 1 so that the first term can be simplified 
to give the result in eq 3.23. The latter assumption is tantamount 

(3.23) 

to the approximation xj - x( which implies small entropic changes 
in those modes which contribute to the reorganizational energy. 
Substitution of eqs 3.23 and 3.17 into eq 3.21 gives the desired 
result in eq 3.24. This result is similar to eqs 1.6-8 in that it 

k,, = E( ,)I” exp[ - (AG + x’)~  ] (3.24) 
h kTx‘ 4kT x’ 

is cast in terms of the free energy change AGO rather than AEo 
as in eqs 1.3-5. This shows that the quantum mechanical approach 
based on simple potential energy surfaces, once again, results in 
useN expressions that involve free energies once frequency changes 
are taken into account. In the definition of Ew in eq 3.17, eq 3.24 
involves the reorganizational enthalpy (x) rather than the re- 
organizational free energy (A) that appears in eqs 1.6-8. As with 
eq 3.17, the approximations required to obtain eq 3.24 suggest 
that it is not exactly valid for reactions with large entropic changes. 

Discussion 
A significant temperature dependence exists in the energy of 

the intervalence transfer band for the unsymmetrical complex in 
eq l . la  with E,, decreasing as the temperature increases: 
(6E / b T )  = -10 cm-I K-I or +29 f 6 eu in CH30D, I.( = 0.035 
M. %om both the free energy surface approach and the quantum 
mechanical treatment presented here, this quantity should rep- 
resent (at least to first order) the temperature dependence of AGO + (A or x). The temperature dependence of AGO’ could be reliably 
derived from the electrochemical measurements (AS” = +21 f 
5 eu, CH30D, I.( = 0.035 M), where the relatively large tem- 
perature dependence (see, for example, refs 18, 27, and 31)  
minimizes experimental complications. (The actual thermody- 
namic quantities measured in the experiments are ASo’ and AGO’ 
rather than ASo or AGO since the measurements were made under 
nonideal conditions.) The temperature dependence of A or x was 
evaluated from the temperature dependences of eqs 2.4 and 2.5 
and was found to be small +3 f 6 eu. Within experimental error, 
the temperature dependences of E,, and AG + (A or x) are 
indistinguishable, with both being large quantities. From this 
observation, it can be inferred that E,, must depend on AGO for 
the intramolecular electron-transfer reaction. That is to say, either 
eq 1.6 or 3.17 could be correct, but eq 1.3 is not correct. 

The entropic changes for many electron-transfer reactions 
appear to originate largely in the solvent.27 The large positive 
entropic change found here suggests a considerable decrease in 
“electrostriction” when the electron is transferred across the ligand 
bridge. This is consistent with two distinct results of the elec- 
tron-transfer act. First, the overall charge distribution in the 
complex (viewed as two neighboring redox sites) is made more 
symmetrical in the conversion from the starting distribution 
(3+,1+) to the final distribution (2+,2+). Second, the positive 
charge is transferred from the relatively compact ammine site ( r  
= 4.2 A) to the larger bpy site ( r  - 6.5 A). Both of these effects 
reduce the total strength of the electric field that the solvent senses 
and decrease the order imposed on the solvent. Alternatively, this 
can be viewed as a decrease in the effective force constant for the 
librational modes by which the solvent dipoles are ordered. This 
results in a decrease in quantum spacings and an increase in the 
number of quantum levels for the librational modes that are 
thermally populated. The net result is that the entropy of the 
system increases. The effects of both charge and size on the 
solvation entropy for electron-transfer reactions have been dem- 
onstrated experimentally for related, nonbridged c~mplexes.~’ 

In agreement with thwe experimental results, we have shown 
that the quantum mechanical treatment also gives the result that 
E,.+, depends on AGO in the classical limit. Thus, this result appears 
to be independent of the assumption of either a dielectric con- 
tinuum for the solvent or a derivation based on free energy sur- 
faces. The long-standing disagreement over this point now seems 
to be resolved. Given the disparate approaches taken by the two 
treatments, there is a strong suggestion that this conclusion is 
general for all types of low-frequency modes (librational, lattice, 
or internal) independent of whether or not the modes are harmonic, 
as long as the modes are near the classical limit. The quantum 
treatment points to two limitations in the relationship between 
E,, and AGO which are not so readily apparent in previous 
treatments. One is the distinction between the band maximum 
and the mean band energy (E, versus MI), and the other is the 
restriction to relatively small frequency changes (Aw/o << 1). 

There is no inherent difficulty in defining or incorporating the 
effects of free energy within a quantum mechanical treatment. 
That result arises directly from the inclusion of frequency changes 
and the defintion of the entropic content of an harmonic oscillator. 
Previous quantum treatments have usually assumed the equiva- 
lence of internal and free energy changes without attempting to 
define the role of entropy or have defined the entropic change 
based on the classical dielectrical continuum model of the solvent 
described by M a r c ~ s . ’ ~ J ~  Our results remove this inaccuracy and 
provide a transition between the two treatments. 

The two may differ regarding the assumption of equivalent force 
constants. There is a strong suggestion from the present results 
that any analysis that does not include different force constants 
for products and reactants in an asymmetrical system cannot 
include all entropic effects accurately. This is certainly true for 
the quantum treatment. Thus it is unclear how beat to extrapolate 
the “general” relationships presented in the Introduction to 
asymmetrical systems. Other points that arise in the quantum 
mechanical/free energy surface comparison are the distinction 
between enthalpic and free reorganizational energies (x versus 
A), and the effects of anharmonic and temperature dependent 
potential surfaces. 

Before developing these points further, it should be emphasized 
that the major goal of this manuscript is the analysis of optical 
electron transfer and its relationship to the corresponding thermal 
electron transfer. Optical electron transfer is rapid compared to 
vibrational or librational processes so that all such motions are 
treated as slow compared to the optical transition. Conversely, 
a major assumption in the derivation of the thermal rate equation 
is that thermal electron transfer is slow compared to vibrational 
and librational motions (and the maintenance of thermally 
equilibrated distributions), and all such motions are treated as 
being rapid compared to the thermal transition. The optical 
process can provide no distinction between differences in thermal 
electron transfer and vibrational/librational timescales. Thermal 
rate constants from optical parameters will be directly applicable 
only for systems where there are no complications from dynamical 
solvent behavior. The influence of dynamical solvent behavior 
is an important issue in its own right, and several approaches to 
incorporate dynamical effects, by stochastic or semiclassical 
analyses, or by molecular dynamics simulations, have been de- 
~ e l o p e d . ~ ~ - ~ *  The results of our analysis are restricted to cases 
where there are no important dynamical effects and are not general 
in this regard. For example, they do not apply to thermal rates 
which are comparable with frequencies for librational motions 
so that these motions become a dynamically determining factor. 

Coupling of the current results with dynamical treatments is 
certainly possible and needs to be pursued, especially since the 
entropic contribution tends to be dominated by the solvent li- 
brational modes. The lack of thermal equilibration in these modes 
when electron transfer occurs will alter the effective entropy of 
activation. However, this is far beyond the scope of our current 
analysis. 
The Quantum Treatment. The first important point that arises 

in the quantum treatment is the distinction between the band 
maximum, E,,, and the mean band energy, MI. The quantity E,.+, 
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is usually associated with the absorption maximum but bandshapes 
of typical intervalence transfer (IT) bands are noticeably asym- 
metrical with the high-energy side of the band broader (typically 
by at least a factor of 1.2) than the low-energy side.2-3,5*8 The 
first moment MI is defined in terms of the maximum in the 
Franck-Condon envelope. The absorption spectrum is the dis- 
tribution in energy of the Franck-Condon overlap at some energy 
times that energy.’$ Unweighted spectra are more symmetrical, 
and the apparent band maxima are shifted to lower energies 
(typically several hundred cm-l for low-energy IT ba11ds).3~3~ The 
present treatment clearly shows that, for proper utilization of 
formulas 1.3-8, 3.17, and 3.21, E, should be taken as the 
maximum of the Franck-Condon envelope rather than the ab- 
sorbance maximum. This point has been made previously by 

This still leaves a distinction to be made between the band 
maximum and the mean band energy. For asymmetrical band- 
shapes, the band maximum is given approximately by Eop = MI 
- M3/2M2.41 In the classical limit the largest term defining 
M3/2M2 is 3kT(Cx,Aw,/w,)/(Cx,). The form of this term is 
reminiscent of an entropic contribution in that it could be described 
as the weighted average of the entropic change in the modes that 
contribute to the reorganizational energy multiplied by a factor 
of 3. The fact that the quantity is an average rather than a sum 
of entropic terms and the seemingly extraneous factor of 3 dis- 
courages any direct thermodynamic assignment to this term (such 
as the entropic portion of the reorganizational energy).42 For 
asymmetrical bandshapes we infer that MI is the quantity of 
interest rather than Ew For harmonic modes in the classical limit, 
the distinction between E and MI would appear to be of no great 
concern. Assuming a va%e for (Cx,Awj/wj)/(Cxj) of 0.1, the 
difference between MI and Eop at room temperature would only 
be 60 cm-’ and the temperature dependence of the band maximum 
would change by 0.2 cm-I K-I. This value is negligible compared 
to the experimental result obtained for the mixed-valence complex 
but could be significant for other processes where the entropic 
change is smaller. The conditions hw << kT and a O / w  I 0.1 are 
stringently required for the relationship MI = AGO + x to be valid 
so that in this limit E,, = MI. For the more realistic case of 
anharmonic modes, M3 would be larger in magnitude and the 
difference between EOp and MI would be greater. Further 
quantitative evaluation of this aspect is being pursued.“2 

These limitations become more important for the evaluation 
of the thermal rate constant as evidenced by the difficulty en- 
countered in the simplification of eq 3.20 to eq 3.24. The most 
restrictive step there was the derivation of eq 3.23 which required 
that w/w’ = 1, which implies, at least, that Aw/w << 1. More 
importantly, for those modes with substantial values of x rea- 
sonable numerical accuracy requires that Aw/o  < 0.1. This is 
more restrictive than the assumption required for the simplifcation 
of M,. It implies that x/x’ * 1 and that entropic changes must 
be small. 

A related aspect appears in comparing rate constants for for- 
ward (keJ and reverse (k,;) electron transfer. From thermody- 
namic reversibility, k,/k,’ = exp(-AGo/k7‘). If eq 3.24 is utilized 
for k,, and k,,‘, reversibility requires x = x’, and there is no 
entropic change. Even when the full second-order expression in 
eq 3.20 is utilized for k,, and ke,‘ and a second-order expansion 
for the entropic term is used, reversibility requires Aw/w << 1. 
This result is not surprising because in the classical limit M3 is 
linearly dependent on Awlw. Since TAS also depends on Awlw, 
in this limit one cannot expect to account completely for entropy 
without including M3. The major difficulty arises from the dif- 
ferences between M2 and Mi which originate from the differences 
between x and x’. In fact, the quantities M3 and M,’ contain the 
necessary information to resolve these problems, and higher order 
treatments are required to resolve these discrepancies. 

Similar difficulties are encountered in attempting to apply 
simple classical treatments assuming Gaussian bandshapes to 
asymmetrical chemical systems. This is best illustrated by first 
considering the modifications required for eqs 1.6-1.8 under the 
conditions that X # A’. In this case, the free energy of activation 

from eq 1.8 is given approximately by AG* = (X, + AG0)2/4X, 
where A, = 2XX’/(X + X’),’7918b although the exact expression is 
much more a1mplicated.4~ The value for E would still apparently 
be E, = AGO + A’, from which AG* cou8 no longer be directly 
calcufated since X remains unknown. It would be necessary to 
measure the optical transition for the reverse process (Ew’ = A 
- AGO) to obtain this quantity. Thus, with X # A’ for the full 
inclusion of entropic effects, it does not seem possible to relate 
the optical and thermal processes in a simple way. 

The relationships between the optical and thermal processes 
derived in the Kubo-Lax formulation assert that a complete 
description of one of the optical processes should provide a com- 
plete description of the thermal p r o c e s ~ . ~ . ~ ~  The second-order 
expansions utilized here do not contain all of the necessary in- 
formation since they also imply that the optical transition for the 
reverse process is required in order to obtain values for both x 
and x’. We have continued the present derivation to third order 
by using the saddle point method. Those results will be presented 
in full detail but the pertinent conclusions for the 
current work are as follows: (1) The fmt band moment and band 
maximum still depend upon AGO. (2) Inclusion of the third 
moment does result in the satisfaction of the reversibility criterion. 
(3) The moments of one of the optical processes do contain 
sufficient information to calculate the forward and reverse rate 
constants, i.e., both x and x’ are obtainable from one of the 
bandshapes. (4) The relationships between the rate constants and 
the thermodynamic quantities are rather complex in form but have 
simpler formulations in terms of the band moments. 

The remaining distinction between the classical and quantum 
mechanical treatments is whether the reorganizational energy in 
these formulations is a free energy (as in eqs 1.6-8) or an enthalpy 
(as in eq 3.24). The origin of this discrepancy is probably in the 
assumption made here of harmonic, temperature-independent 
potential surfaces. The two important properties of the harmonic 
oscillator in this regard are that the average nuclear position always 
corresponds to the minimum of the enthalpic well, regardless of 
temperature, and that the frequency of the mode does not change 
as a function of either position on the potential surface or the 
temperature. 

There are two simple ways by which a temperature dependence 
could be introduced into x and x’. The first would be to allow 
Aq to be temperature dependent, and the second to allow w and 
w’ to be temperature dependent. The first is easier to analyze since 
it does not affect AGO’. The extra temperature dependence in- 
troduced in this way would be attributable to the entropic portion 
of the reorganizational energy since ASo is unaffected. This 
second situation is more complicated since if w and w’ are tem- 
perature dependent, ASo is also temperature dependent. In either 
case the values of Aw or w and w’ (and x and x’) to use in 
formulations of optical or thermal electron transfer are those at 
the prevailing temperature and could probably be more properly 
described as X, the reorganizational free energy. 

A more realistic method for analyzing the distinction between 
X and x is probably through the introduction of anharmonic 
oscillators (e.g., Morse oscillators). The average nuclear dis- 
placement for the Morse oscillator does not directly correspond 
to the minimum of the potential surface for any finite temperature 
and is a function of temperature. The average shifts toward larger 
displacement as the temperature increases. Similarly, the 
Boltzmann averaged frequency of the mode will decrease as the 
temperature increases. In effect, the frequency of the mode 
depends on the average displacement. Changes in thermal pop- 
ulation will change the average displacement in the ground state, 
and vertical excitation to the excited state will occur to different 
displacements and different effective frequencies on the enthalpic 
surface of the excited state. This will alter the temperature 
dependence of the band maximum, and this additional temperature 
dependence should correspond to the entropic portion of X. An- 
harmonic effects could account for the temperature dependence 
of E for the symmetrical complexes in eqs 2.4 and 2.5 where 
AGookust be rigorously zero. The effects of Morse and other 
anharmonic oscillators on optical bandshapes and electron-transfer 
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rates have been previously analyzed to a sufficient degree to show 
that additional temperature effects do arise from them.4e46 
Fxtending these analyses to include a rigorous definition of entropy 
and to the development of a quantum definition of the reorgan- 
ization free energy is required to verify this hypothesis. 

A common criticism of the application of a quantum mechanical 
model to electron-transfer reactions is the “assumption” that the 
solvent modes can be represented adequately as harmonic oscil- 
lators. It has long been argued that this assumption should not 
be made, but there is little quantitative evidence about how well 
or poorly either individual solvent librational modes or the col- 
lective solvation energy can be represented by a simple harmonic 
model. There are two issues. The first is whether it is appropriate 
to use a general quantized treatment for some or all of the solvent 
motions. The second is whether the quantized treatment needs 
to be harmonic or anharmonic in nature. 

With regard to whether or not using a quantized treatment is 
required, we note the following. For the case of strongly hy- 
drogen-bonding solvents such as water, the energy of interaction 
between two solvent molecules can easily be 6 kcal/mol (2100 
cm-I) with the frequency of the intermolecular modes being several 
hundred ~m-’ .~’  Experimentally determined reorganizational 
energies for complexes of the type [RU(NH&(L)]~+/~+ (L = 
pyridine, ...) in strongly hydrogen-bonding solvents have been found 
to be - 120 cm-I per solvent molecule.“ Even for weakly polar 
and weakly hydrogen-bonding solvents such as benzene, the in- 
teractions between solvent molecules are -2 kcal/mol (700 
~ m - l ) . ~ ~  For the strongest of these interactions, a quantized 
approach would not only be valid but required. For the weaker 
of these interactions, a quantized approach may not be necessary 
but would be appropriate. Given the demonstration here of the 
merger between the quantum and classical treatments with regard 
to dependence on AGO, there is no apparent reason why the 
quantum treatment cannot be used at least for some aspects of 
solvent behavior. This is an important point since, as noted in 
the Introduction, there are many solvent effects, particularly for 
hydrogen-bonding solvents, which are not adequately explained 
by the dielectric continuum treatment. The quantum treatment 
represents a framework by which some of these deficiencies can 
be addressed. 

With regard to the assumption of harmonic oscillators, for the 
strongest solvent interactions, the harmonic treatment could well 
be accurate at room temperature. For the weaker interactions, 
an accurate treatment of any specific mode would need to include 
anharmonic effects. The treatment of collective modes might 
require the same. Both reorganizational energies and frequencies 
for specific and collective solvent modes would be expected to be 
temperature dependent given the changes in density and dielectric 
constant that occur with temperature and the likely strong an- 
harmonic nature of the solvent librations. It might be possible 
to include these effects into a harmonic treatment by allowing 
both frequencies and reorganizational energies to be temperature 
dependent and by describing them phenomenologically. It would 
be more desirable to incorporate specific anharmonic models which 
would allow more physically based interpretations of experimental 
data. 

We feel that the quantum treatment with harmonic oscillators 
and the incorporation of frequency changes is not an unreasonable 
model for nondynamical solvent behavior and at leust qualitative 
features can be analyzed within that framework. The inclusion 
of anharmonicities would greatly increase the quantitative nature 
of this description and is being pursued. The fundamental rela- 
tionships discussed here between optical and thermal electron 
transfer for a general quantum mechanical treatment, shown in 
eqs 3.20 and 3.21, do not rely directly on the assumption of the 
harmonic oscillator model. It relies, instead, on the validity of 
the method of moments put forth by Kubo’ and Lax33 and the 
assumption that the third moment is small (i.e., the classical limit 
with small entropic changes). The harmonic oscillator model was 
invoked to demonstrate the range of applicability and to translate 
the moment expressions into thermodynamic or spectroscopic 
quantities. Thus, the solvent can be reasonably treated within 

this scheme simply by its phenomenological effect on the band 
moments. 
As was made apparent by the harmonic treatment, neglect of 

the third moment is a stringently limiting assumption and higher 
level expressions must be utilized even to include general entropic 
effects. We find the assumption of “classicalw Gaussian band- 
shapes to be more restrictive than the assumption of harmonic 
potential functions. The inclusion of anharmonic effects will 
accentuate this distinction. Overall, this framework seems to 
provide an adequate forum within which the effects of such 
nonideal behavior could be studied, although quantitative infor- 
mation describing these perturbations is currently lacking. From 
current activity in the areas of developing more accurate potential 
functions for solvents and of improved molecular dynamics sim- 
ulations, more accurate information on this type of behavior should 
be forthcoming. 

Conclusions 
1. We have measured the temperature dependence of the 

intervalence transfer band maximum (Eop) for an asymmetrical 
ligand-bridged complex where AGO has a substantial temperature 
dependence and shown that the two have very similar values. This 
demonstrates that Eop depends on AGO rather than AH” even for 
an optical transition where the dielectric continuum model is 
probably not appropriate. 

2. We have developed a quantum mechanical, harmonic os- 
cillator model for optical and thermal electron transfer which 
incorporates frequency changes, a feature which is necessary for 
AGO # AH”. In the classical limit with small frequency changes, 
it was shown that both the optical and thermal electron-transfer 
processes should depend on AGO rather than AH” in agreement 
with the classical, free-energy surface approach. 

3. We have been unable to derive simple thermodynamic 
expressions for the optical and thermal processes of a truly 
asymmetrical system except in the limit of small frequency 
changes, which requires small entropic changes. Therefore, we 
feel that entropic effects are not included completely in the simple 
formulations which correspond to those derived classically. In 
other limits the optical and thermal processes are still rather simply 
related to one another. 

4. The remaining distinction between the quantum mechanical 
and free energy surface descriptions of electron transfer is the 
distinction between enthalpic and free reorganization energies. 
In the quantum treatment, this distinction appears to be lost in 
the assumption of temperature independent, harmonic potential 
surfaces and will be resolved by the relaxation of that constraint. 
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