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ABSTRACT. — Controlled intramolecular nonadiabatic electron transfer is one of the earliest proposed schemes
for molecular electronics. We discuss the general pictures and computational schemes appropriate for such
systems, focusing on bridged binuclear ruthenium complexes as a specific example. The existence of distinct
self trapped minima on the potential surface is shown to be necessary for the existence of an intramolecular
electron transfer rate constant. While the Cordon approximation (independence of the electronic mixing matrix
element on nuclear geometry) will not generally be valid, its use facilitates discussion of the transfer process
in terms of simple electronic structure concepts such as superexchange. Some examples of self-trapped energy
minima, and the corresponding physical and electronic structures, are calculated at the extended Hickel level;
the wave functions are quite strongly localized on half of the molecule, although the energy depth of the self-
trapped (mixed valency) structure is small. Pyrazine and bis { pyridyl) Be bridges show no self-trapped minima

(Robin/Day 1) while a 4,4'-bipyridy| bridge does show such asymmetric structures (Robin/Day Il).

L ILi.-oduction

One of the most widely discussed processes in molecular
electromics is controlled intramolecular electron transfer. This
process is critical to a number of biological mechanisms, and
its discussion in terms of molecular rectification was an
early, and still important, concept in the molecular electronics
field. ' ~* The control of the rate and directionality of elec-
tron transfer can be afforded by appropriate chemical design
of the molecular electronic matrix element.

Theoretical calculation, and prediction, of controlled intra-
molecular electron transfer rates thus relate both to synthetic
molecular electronic materials and to such biological systems
as the photosynthetic reaction center, cytochrome cfcytoch-
rome oxidase complexes, modified hemoglobin and cytoch-
rome moieties, and a number of important synthetic systems,
including binuclear metal complexes. The subject has been
extensively investigated, ' ~% and we should like here to con-
centrate on the relative roles of self-trapping, bridge assist-
ance, and superexchange in determining the rates of intramo-
lecular electron transfer.

A well-defined rate for intramolecular electron transfer
requires the existence of well-defined precursor and successor,
or initial and final, states. ¢ The definition of such states, the
definition of a rate constant, and the relationship to the
polaron self-trapping process is discussed in section II
Section III focuses on the nature of these extended, many-
electron states. It discusses the roles of orthogonality in
determining the effective electronic mixing, and the nature of
non-adiabatic electron transfer. Section IV discusses how

one-electron matrix elements and the attractive superexch-
ange formalism relate to the correct nonadiabatic electron
transfer rate expression in terms of an interaction matrix
element between many-electron states. Particular examples,
involving extended Hiickel level calculations on mixed
valency species of ruthenim with different bridges, are found
in section V. Finally, section VI contains some general
remarks.

H. Electron transfer rates, precursor and successor states and
polaron self-trapping

The process of intramolecular electron transfer is nearly
universally discussed ® in terms of the configuration coordi-
nate diagram, such as that in Figure 1. The two local minima
corresponding to precursor and successor geometries are
denoted Q; and Q, respectively. The total reorganization
energy is indicated as A. The overall exoergicity, AG®, is
basically identical to AE®, and the splitting of the electronic
levels at the crossing point is 2 H,,. ° Here the subscripts /
and r denote left and right, and i and f correspond to initial
and final states (or precursor and successor states). The
potential is, of course, many-dimensional and these higher
dimensionality effects have profound consequences, particu-
larly when subsidiary minima occur on the potential surface.
For our discussion, however, the situation as outlined in
Figure 1 is sufficient. i

The double minimum geometry of Figure | corresponds
to the so called normal electron transfer regime, in which A
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Figure 1. — Schematic configuration coordinate diagram showing
adiabatic (heavy) and diabatic (light) potential surfaces for an intra-
molecular electron transfer event. The various free energy changes
and quantities are referred to in the text. AG® and AE® differ by
small entropic terms, but are considered to be identical for use in
this text. 2 H,, is the distance between the ground and excited state
surfaces at the crossing point.

exceeds | AGY|. When |AG"| equals A, no maximum on the
curve occurs, and for |AG®| greater than ), one enters the
inverted regime — these are shown in Figure 2. Energetic con-
trol of reaction rates can be obtained by going from the
situation with a large barrier in figure 1, to the zero barrier
situation of Figure 2 a (where the transfer is essentially instan-
taneous, limited by viscosity and other dynamical effects
rather than by activation processes) to the inverted regime
of Figure 2b. 7 Again, as our topic here involves bridge
control of reations, rather than energetic control, we will not
discuss the situation of Figure 2.

-

Figure 2. — Figure 2a shows the schematic configuration coordinate
diagram for a situation in which the activation energy for electron
transfer vanishes, and Figure 25 shows the situation of the so-called
inverted regime, in which AG" exceeds the reorganization energy.

If the electronic mixing is strong enough, as indicated in
equation 1 a,

H, S\ (1a)
Hy <4 (16)

then the curve of Figure 1 becomes that of Figure 3, with no
stable minima corresponding to precursor and successor. '
Under these conditions, one cannot, experimentally, expect
to find a rate constant: rates refer to passage from one well-
defined structure to another, and such structures are not
found in situation such as that of Figure 3, in which the zero
point energy is sufficient to assure delocalization. This is the
situation to be found, for example, in a cofacial pair of
benzenes, with one electron removed: while for very extended

Figure 3. — Various schematic potential curves for a situation of
very strong mixing, in which separated precursor and successor states
do not exist and therefore, no intramolecular electron transfer rate
can be defined or measured.

geometries (say a 5A separation between the rings) one can
certainly define and observe electron motion from one ring
to the other, for smaller separations the electron is delocali-
zed, and one can neither define initial and final states or
observe a transfer rate. ® In the chemistry of mixed valence
species, the situation such as that of Figure 3 defines so-
called Robin/Day class Il  substances,® such as
[((NH,)sRu), (N)P* (dinitrogen bridged ruthenium penta-
mines, in the total valency state plus 5). In this situation, as
Hush has stressed, '© the wavefunction is delocalized, and
discussion of rates of electron transfer is experimentally
illegitimate.

In molecular electronics applications, ! “* one is generally
interested in situations in which initial and final states are
defined, and electron transfer between them can be control-
led. We thus return to the situation of Figure 1. One then
distinguishes between adiabatic and nonadiabatic electron
transfer. This is most simply understood in terms of the
semiclassical Landau-Zener construction, ® in which one con-
siders passing along the diabatic (dotted) curves in Figure 1,
and whether or not the system passes from the precursor
parabola to the successor parabola on crossing. Using ' a
semiclassical picture in which the nuclei move classically, one
can calcuiate electron transfer in terms of a probability Py,
describing the probability of crossing from one surface to the
other on a single transit of the transition region. Extension to
a many-crossing situation then yields

_ 2P,

1

= vy
1P,
Py=1—g" 27 3
7‘.'3/2
2ﬂY=|Hif|2<h )(kTE*)'”Z “
Va )

Here v, is the characteristic nuclear frequency at the bottom
of the precursor well, E® is the activation barrier, and H,;
is the matrix element mixing precursor and successor geome-
tries, and causing the splitting of the adiabatic (solid) curves
in Figure 1. While corrections to the Landau-Zener formula
are available, 12 it is commonly used in discussions of
nonadiabatic electron transfer, at least in the situation where
viscosity effects, or diffusional transfer, or relaxation
dynamics, are unimportant. (Relaxation dynamics are in fact
critical in many electron transfer situations, and have been
extensively discussed elsewhere. 7)

When the nonadiabatic electronic factor of equation (2)
is substituted into the transition state theory expression in
equation (5), ome obtains the common form, ® 13 of
equation (6)

kET=e—AE’/RT Va Ket (5)

2n 1 172 .
kpr= Hi 2,-AE IRT 6
T h <4nkTE*> | Hil (©)
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The activation energy term, which is simply the barrier height,
is given by

AE? =(AG°+ )4 )

Notice that equation (6) holds in the limit of nonadiabatic
electron transfer: that is, in a limit where the exponent in
equation (3) is small. Thus the condition for nonadiabatic
electron transfer, in the absence of frictional effects, is given
by

2ny<l. 8)

The opposite limit, of adiabatic transfer, with rate indepen-
dent of electronic mixing between precursor and successor,
is simply given by equation (5) with x,,=1. In this adiabatic
case one cannot control electron transfer by modification of
the bridge or the electronic structure, but only by ‘changing
the relative energetics. Such cases are probably less relevant
for molecular electronics, therefore we do not discuss them
further.

The formulation that we have taken ignores the process of
nuclear tunnelling, and assumes that the rate occurs by pas-
sage over the barrier top, yielding the activated complex form
of equation (5). Generalizations to permit nuclear tunnelling
are quite simply given in terms of a polaron theory of electron
transfer, and are discussed fully elsewhere. 8 For our purposes
here, this distinction is not crucial since our focus will lie on
the electronic structure term given by H,y; in the vibronic
theory, the generalization of equation (6) still has the H;?
prefactor, but the activation term and the square root prefac-
tor are replaced by density of states weighted Franck-Condon
factors, 5 ¢

The. two conditions of equations (8) and (15b) assure
nonadiabatic electron transfer, with a well-defined rate con-
stant between two well-defined states. It is in the electronic
structure anlaysis of such situations that we arc primarily
interested. Formally, the initial states and final states can be
defined as polaron-type self-trapped minima on the potential
surface: they arise because the nuclear geometry changes as
the electronic wavefunction does, and the potential energy
minimizes when the nuclear geometry is that of the (differing)
precursor and successor states. Specific examples will be given
in section V.

Given the polaron self-trapped states defining initial and
final, or precursor and successor, states, and the existence of
a rate constant between them given in the transition state
limit by equation (6), we now wish to specify precisely how
to calculate and understand the electronic mixing matrix
element H;,.

III. Initial and final extended states, nonorthogonality, and
nonadiabaticity

In the limit of nonadiabatic transfer, equation (6) shows
that a combination of vibronic and energetic factors with
electronic structure determines the transfer rate. Thus far, we
have not specified the actual value of H,, except to indicate
in Figure | that the splitting between the adiabatic states is
roughly twice this value. We can formulate the rate process
in terms, say, of a generalized scattering theory approach; in
this case, the term denoted H,, in equation (6) is a generalized
T-matrix element, '* which, to lowest order, is simply the
electronic matrix element between the electronic state locali-
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zed at Q,, and that localized at Q,. To this lowest order, H,
is well-defined as

Hif=<\yi(Q)‘H|q‘f(Q)>~ )

The notation and the understanding of equation (9) are,
however, not simple. The physical statement of equation (%)
is that one evaluates the electronic mixing matrix clement
between the initial many-electron state ¥, and the final many-
electron state, ¥, These states are themselves defined as
eigenstates of the so-called crude Born-Oppenheimer, or
Herzberg-Teller, hamiltonian. The electronic eigenstates
themselves are defined by equations (10)-(13).

H,(Q)=H(Q)+(Q~ Qv 0H/3Qg, * - - - (10)
H,(Q)=H(Qp+(Q—Qn 0H/0Q g, + - - (11
Hy(Q0) 0,(Q) =2,(Q0) @, (Q,) (12)
H,(Qr) ®r(Qr) =21 (Qr) Pr (Qn) (13)

The expansions in equations (10) and (11) are about the
minimum geometries on the left and right (precursor and
successor, or initial and final) minima of figure 1. The many-
electron eigenstates of equations (12) and (13) are defined at
these minima, and ¥; and ‘¥, are respectively the lowest
energy O states of equations (12) and (13). In equations (10)
and (11), we have truncated the Taylor expansion of the
Born-Oppenheimer electronic hamiltonian after the first term.

The matrix element H;, of equation (9) is calculated at any
arbitrary value of the nuclear coordinate @. In a Condon
approximation, (9) would be evaluated at the crossing point,
whereas the eigenstates of equations (12) and (13) are defined
at the self-trapped minimum geometries. The fact that (9) is to
be calculated at the point at which initial and final vibrational
polaronic energies are identical, or the so-called coincidence
event geometry, '* is a consequence of the polaron model,
or the linear coupling between electronic and vibrational
motion. Note that the use of equations (9) and (6) implies a
Condon-type simplification: electronic mixing is calculated

* only at one geometry, and its variation with geometry is not

included. This Condon restriction is in general not
adequate, ‘¢ in particular for situations in which orientational
or twisting degrees of freedom strongly modulate the electron
transfer mixing. ! '8 Under these conditions, one must gen-
eralize equation (6) by defining the mixing matrix element
H,; as a function of these non-vibrational degrees of freedom,
and then averaging over the appropriate wavefunction distri-
bution (or thermal distribution if & T is much greater than
ha). Again, we will not consider these geometrically constrai-
ned situations, except to point out that by control of such
geometries one might well be able to change very substantially
the rate of electron transfer, and thus provide some measure
of control. In phthalocyanine molecular metals, precisely such
a difference appears to hold in Ni (pc) x, where with different
counterions x one changes the orientational angle between
nickel phthalocyanines, and proceeds from metallic to semi-
conductive transport. '# 1%

The electronic states of equations (9), (12), and (13) are
many-electron states. ® They can, through reasonable appox-
imation, often be defined as single determinant self-consistent
field type states, consisting of occupied molecular
orbitals. * 2° Such orbitals are in general delocalized; more-
over, the wavefunctions of equations (12) and (13) are defined
in terms of different electronic hamiltonians (since the hamil-
tonians are defined at different nuclear geometries) and there-
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fore are not orthogonal to one another. One can correct H;
for the nonorthogonality effect by direct solution of the time
dependent two site problem, resulting in the form

I

H,=
Ti-sy

(mf—sifH;i)~ (14)

Here S, is {¥;|'¥, ) while the matrix elements H' are those
between the nonorthogonal states—that is, A of
equation (14) is in fact evaluated in equation (9). 22! The
prime notation denotes calculation in terms of nonorthogonal
wavefunctions, and the H;, of equation (14) is the correct one
to use in the overall transfer and expression of equation (6).

Thus, within the generalized approximations that we have
used (Condon approximation, Born-Oppenheimer separ-
ation, Herzberg-Teller expansion, polaron model, negligible
friction effects, nonadiabatic limit, and neglect of barrier
tunneling), equations (6-14) permit calculation of the electron
transfer rate. We now focus on the calculation, and interpret-
ation, of the mixing element H,.

IV. Superexchange and effective matrix elements

Molecular electronics applications of controlled electron
transfer involve nonadiabatic transitions modulated by bridg-
ing structures. For example, either the candidate molecular
rectifier species of Figure 4 ¢, or the bridged binucluear com-
plex of Figure 4 b entail.electron transfer between reasonably
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Figure 4. — Three structures in which intramolecular electron

transfer between well-defined precursor and successor states should
be observed. Figures 42 and 45 have been prepared and extensively
studied, while Figure 4 ¢ is a proposed molecular rectifier molecule.

well-localized sites, occurring through a bridge (respectively
bicyclo octane, or bipyridyl). For such situations, the direct
transfer element overlap between donor and acceptor is rela-
tively small. In a large number of the synthetic molecules
recently prepared to examine intramolecular transfer, includ-
ing bridged prophyrin quinone complexes, and organic
bridges containing decalins or extensive fused norbornyl net-
works, and in modified protein systems containing two metal
centers separated by large distances 22 (greater than (2A),

direct interaction between donor and acceptor regions can
generally be neglected. One then deals with a phenomenon
of bridge assisted transfer, and specification of how bridge
structures can promote or modulate electron transfer in such
systems lies at the heart of controlled nonadiabatic transfer.

Generally, one understands the electronic structure of such
molecular species in terms of an orbital basis. The nonrela-
tivistic electronic hamiltonian, at a given geometry Q, can
then be written as

¥ 1
H, (Q)= Zhija ia.-+§Z<iJ'
ij i

1 [
—’k[)a‘-aja,‘a,. (15)
,

Here the operator a; creates an electron in the j-th basis
function, A, is the matrix element of the one-electron operator
between basis functions / and j, and the matrix element in
the second term is a Coulomb interaction, resulting in exch-
ange or Coulomb integrals. If one chooses atomic basis
functions, then the overlap matrix elements between basis
functions i and j in equation (15) are non-vanishing, and the
anti-commutation relations are no longer simply delta
functions. Alternatively, one can expand in the molecular
orbitals that are orthogonal (for any given Q) and then the
operator algebra is simply that of independent fermions. The
electronic hamiltonians of equations(10-13) are precisely that
of equation (15), with the nuclear geometry chosen to be that
of the right or left stable minimum in Figure 1. The correct
evaluation of the H,; element entering into equation (6) then
follows from equations (14) and (9), with ¥; and ¥, the
many-electron wavefunctions. ®

Newton, in extensive and very important studies of transi-
tion metal complex systems, !!'2®  has pioneered the use of
a corresponding orbital scheme, ?? both to calculate and to
discuss the mixing matrix elements. In this description, single
determinant approximations to ¥; and ¥, are written in
molecular orbital representation, with the highest, singly
occupied molecular orbitals of ¥; and ¥, being substantially
different. If, then, the overlaps of the doubly occupied mol-
ecular orbitals in ¥, and ¥ are very close to unity, the entire
interaction matrix element is effectively reduced to a one
electron matrix element, between the two singly occupied
molecular orbitals. In this picture, one then simply evaluates
the matrix elements in equation (14) between the singly occu-
pied orbitals. Indeed, half the splitting at the barrier top,
indicated as 2 H,, in Figure 1 (see caption), is often '!**° an
excellent approximation to the true effective interaction. This
corresponding orbital scheme not only permits the approxi-
mate description of the many electron mixing in terms of
single electron functions, but it also indicates when such
mixing is inappropriate: if the doubly occupied molecular
orbitals are substantially different, one needs to consider the
full multi-electron interaction rather than its one-electron
limit.

There is, nevertheless, substantial difference between single
one-electron matrix elements such as 4;; of equation (15) and
the effective H,, to be used in equation (6). This has to do
with the nature of the eigenstates ¥, and ¥, that enter into
equation (9). These are polaron trapped states, and they
will generally be substantially delocalized over the entire
supermolecule geometry. In particular, the molecular orbitals
will not, in general, be localized either on any one given
atom or even in any one substructure, but will extend from
the donor region towards the acceptor and (although very
slightly) onto the bridge. Such delocalization has been discus-
sed extensively by a number of workers; Fischer 2* refers to
these states as soliton type states, but they are most simply
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understood as the correct electronic eigenstates corresponding
to the energy minima in Figure 1.

Much of the work in understanding electron delocalization
and transfer in long-range intramolecular systems has been
based on the superexchange model first discussed by
McConnell. ' 2% This is most easily understood by ignoring
the two-electron terms in equation (15), and rewriting the
one-electron part in the form of equations (16) and (17).

H=Hy+V (16)
+
Hy=%¢ga,a (17a)
A
V=%'V,.a,a, (175)

Here the orbitals indexed by A can be chosen fairly arbitrarily;
ordinarily, one would understand them as those in which, on
the basis of chemical intuition, one might expect electron
localization. For example, in mixed valence ruthenium species
they might be chosen as the singly occupied d-function on
the ruthenium center, while in the bridged species of
Figure 4 ¢, they might correspond to the frontier orbitals on
the TCNQ or TTF ends. For proteins, several groups have
now developed modeis based on such a description, with the
orbitals being frontier orbitals on particular amino
acids. 2827

If the description of equation {17) is chosen, the effective
matrix element to be used in equation (6) can be found
easily using perturbation theory (other approaches, including
partitioning 27“ or effective -hamiltonian schemes, > can be
used as well). This is most simply done on the basis of
Brillouin-Wigner perturbation theory, or Green’s function
analysis, !4 although equivalent formulations in terms of
perturbed “wavefunctions are also available. 2728 2° The
Green’s function analysis starts with

Tlu= Vlu +Z Vko Gc'r Tw (18)

where V,, is the matrix element of equation (175), G, is the
electronic Greens function, and T),, is the scattering operator
maltrix element between local functions A and . T), depends
upon the energy of the donor and acceptor states, which is
assumed to be the same. Iteration of equation (18), using the
one-electron form of equation (17), yields

Vi V. Vie Ve Ve
T (B)=V,+Yy = 2§ Ao 2 19

E,~E o (E,~E)(E.—E)

Further iteration yields higher-order terms, and the form of
these terms is precisely that of the superexchange theory of
McConnell. The sums as written directly in equation (19) are
unqualified; alternatively, one can define particular pathway
expansions, such that only irreducible parts of the sums are
kept. The important point is in the interpretation :
equation (19) indicates, for example, that transfer from a
ruthenium d to another ruthenium d can occur through
excited orbitals of energy E,, and that the contribution of
that particular pathway would be given by the appropriate
term in the sums of equation (19). One can then distinguish
hole type transfer from electron type transfer, depending
on whether the intervening orbitals [labelled o, t... in
equation (19)] are of electronic type or hole type,
respectively. 3°

There then appears to be a difference in level of description
between the simple statement of equation (6) or
equation (9), which suggests a single electronic integral

NEW JOURNAL OF CHEMISTRY, VOL. 15, n° 2-3-1991

between initial and final many-electron states, and the super-
exchange formulation of equation (19) which builds in many
higher excited states. It is legitimate to ask whether in fact
the physical information involved in both is the same, or if
there is something extra in the superexchange formulation
absent in the simpler form. The answer to this latter question
is no: in fact, the formulation of equation (6) is more general
than that of (19), since (6) does not ignore two-electron
contributions to the hamiltonian. {Extension of (19) to
include two-electron terms, at least at the Hartree-Fock level,
can be done but generally is not.]

While the many-electron, polaron model, corresponding
orbital scheme includes the superexchange-type formulation
of equation (19), it is in fact both more general and more
useful. The superexchange approach is heuristically valuable,
since it permits interpretation of the effectiveness of given
bridging structures in terms of their molecular orbital energ-
ies. The difficulty is that one has no general procedure for
selecting the orbitals labelled by the Greek indices in the one-
electron hamiltonian. If one chooses them as localized atomic
functions, then the mixing matrix elements V,, are substan-
tially larger than typical energy denominators, and the super-
exchange perturbation series does not converge. It is thus
more appropriate, and more chemically reasonable, to choose
them as localized structures such as the frontier orbitals on
amino acid bridging groups in proteins. 27 Again, though,
electronic basis states are not uniquely defined, and different
choices may give different rates of convergence, and even
different answers.

Even more serious, one generally does not know what the
initial and final choices for donor and acceptor one-electron
functions are. For mixed valency situations in bimetallic
complexes, one might approximate these localization sites as
singly occupied d-functions, but such a picture may fail with
organometallic ligands, and in general is quite arbitrary.
When the localization sites are extended, as they are in
porphyrin quinone complexes or the structure of Figure 4c¢,
it is again arbitrary precisely how one chooses donor and
acceptor. In the correct formulation, there is no ambiguity:
the wavefunctions ¥, and ¥, are the polaron-trapped,
ground-state wavefunctions corresponding to the energy
minima in Figure 1. It is possible that at high temperatures
one needs also to consider thermal contributions from higher
excited states, but generally such complications are not consi-
dered important.

For polaron-trapped, many electron states, ¥; and ¥, will
in general be extended species, and their molecular orbital
representation can lead to calculation, through the corre-
sponding orbitals method, of H;, of equation (6). This
scheme is general and appropriate, and deals with such com-
plications as definition of the initial state, arbitrariness in the
electronic structure description of the bridges, and the role
of electron repulsion. It can experience difficulties with large
coupling elements, in which case other approaches may be
preferable. Applications to a number of systems *°? have
been given by Newton, '! by the IBM group, *! and by Ohta
and collaborators. *2 We will give a few examples of how the
delocalization occurs in the case of one-electron models of
extended Hiickel type, and in mixed valency species.

V. Examples: mixed valency and bridge assistance

For illustrative purposes, we will consider calculations for
cases of mixed valency in binuclear bridged ruthenium com-
plexes. Such species have been an important test area for
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concepts of intramolecular electron transfer since they were
first introduced by Taube’s group more than twenty years
ago.?3 In these molecules, the differentiation between fully
delocalized (e.g., Robin/DaylIll) and weakly localized
(Robin/DayII) systems is determined by the intramolecular
competition between electronic delocalization, which lowers
the kinetic energy of the electron, and valency trapping, which
can result from both selective solvation and ion pairing.

Ruthenium binuclear species have been extensively studied
both theoretically and experimentally; vibronic coupling
models have been applied, the importance of the bridge sites
and of bridge vibronic coupling has been stressed, and the
nature of the frontier orbitals appropriate for discussion of
the electrical transfer process has been pointed
out. 2+ 56:11,20.30.33.34.35 QOyr focus here is on the nature
of the electronic states, and their variation with the strength
of the bridging interaction.

We have calculated the total energies of the mixed valent
binuclear species using the extended Hiickel model, with
standard parameterization. All environmental effects are
ignored.

Figure 5a shows the calculated potential curve for the
Creutz-Taube ion (NH,) 5Ru-pyz-Ru(I*II—I3)5*5. This is
expected, on purely experimental grounds, *° to be a fully
delocalized Robin/Day I system. Figure 5a indeed shows a
single minimum potential; the total electronic energy is plot-
ted as a function of a distorsion parameter Q, that indexes
departure from symmetry around the midpoint. In the case
of Figure 54, Q indexes a symmetric stretch of all metal
to ligand distances about one ruthenium and a symmetric
compression of all distances about the other. Specifically, for
Q= £10, all metal to ligand distances about one Ru have
been stretched by 0.2 A (relative to the bond distances at the
minimum energy geometry), while all those distances about
the opposite Ru have been compressed by 0.2 A. Under the
conditions outlined a. e, we expect no localizatic . no
stable precursor or successor states, and no intramolecular
clectron transfer. Rather, one should observe transitions such
as an optical excitation from the second highest orbital to

the half filled, highest occupied orbital (see Fig. 3; this would -

be represented by a transition from the ground state to the
first excited state). This transition is the Limiting case of the
intervalence transfer band 3> 37 observed in localized mixed
valency species.

Figure 5b schematically shows the density in the singly
occupied frontier orbitak Notice that it is indeed delocalized,
with large amplitude on the Ru centers, plus substantial
amplitude on the bridgitig pyrazine. 38 The simple picture of
bonding in terms only of runthenium d-orbitals in inadequate,
as has already been stressed by Ondrechen ** and by Launay
and Joachim.? When the bridging ligand is changed from
pyrazine to 4,4'-bipyridyl, interesting changes can occur in
the potential functions. If the twist angle around the single
bond linking the two rings in the bipyridyl is 90°
(perpendicular rings), the potential curve shown in Figure 64
is obtained. Though the calculated energy barrier is clearly
small, this shows localization into precursor and successor
states, between which transitions, corresponding to intra-
molecular electron transfer, will occur. The schematic con-

- figuration coordinate Q is in fact a complex linear combina-
tion of the motions in the molecule, and is determined locally
using a simplex algorithm. The localization of the electronic
wave function in the precursor geometry corresponding to
the left minimum of figure 6a is indicated in Figure 65,
showing the singly occupied MO electron density. While very
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Figure 5. — Potential curves and singly occupied molecular orbital
(frontier orbital) densities of the Creutz-Taube ion, [(NH;) ;Ru-pyz-
Ru (NH,),}**. Note that in Figure 5a, there is only a single mini-
mum of total emergy as a function of asymmetric displacement
generalized coordinate Q. Figure 5b then shows that the frontier
orbital is completely delocalized over the two rutheniums, with con-
siderable contributions from the ligands.

strongly dominated by the ruthenium on the right, the density
nevertheless delocalizes fairly substantially about the right-
hand side of the molecule. Its extension on to the ruthenium
on the left is very small, an important manifestation of the
localization phenomenon. If the geometry along the distor-
tion coordinate Q is made symmetric (i.e., at Q0 =0), one
obtains the wavefunction at the barrier top Qr. In moving
from the minimum to the barrier top, the wave function itself
changes substantially; Figure 6¢ shows the single occupied
MO calculated at Q,. Here we observe a delocalized wave
function quite comparabie to that of the Creutz-Taube ion.
At this symmetric geometry, once again the intervalence
transfer band becomes a transition between delocalized bond-
ing and anti-bonding MO's. Calculations of the effective
coupling in bipyridyl-bridged binuclear complexes have been
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Figure 6. — As in Figure 5, but this time for the 4,4'-bipyridyl
bridge, with a 90° twist around the internal single bond. Notice in
Figure 6a that separable minima corresponding to precursor and
successor exist, and in Figure 65 that the frontier MO is largely
localized on one side. Figure 6 ¢ shows the frontier orbital density
calculated at the symmetric geometry, corresponding to the top of
the cusp in 6a (i.e., at @ =0).
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previously presented by Woitellier er al., 2 who consider the
different contributions to the overall coupling.

The orbital wave functions calculated at the precursor and
successor minima of Figure 6a are substantially localized,
and very non-orthogonal. The nonorthogonality is important
and can be rigorously dealt with (at least at the single con-
figuration level) using the corresponding orbital transforma-
tion method. 223

Figure 7 shows the potential curve calculated for planar
bridging 4,4"-bipyridyl; in Figure 8, a beryllium atom has
been inserted along the single bond bridging the two (assumed
perpendicular) pyridines. In both of these cases, one observes
essentially Robin/Day ITI behavior, as the increased bridge
electronic mixing bridge dominates the vibrational trapping.
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Figure 7. — As in Figure 6, but this time with bipyridyl ligand
planar. Notice that in this case, no separable precursor and successor
states exist.
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Figure 8. — As in Figure 6, with a beryllium inserted in the single
bond between the two bipyridyl rings. In this case, despite the 90°
twist, the beryllium atom results in strong enough mixing that no
distinguishable minima exist on the potential energy curve.
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These calculations suggest that, in the absence of effects
due to environmental trapping, among the four species consi-
dered only the one with weakened conjugation across the
bridge permits distinguishable precursor and successor
geometries and therefore will show measurable rates of intra-
molecular electron transfer.

V1. Remarks

Despite the fact that the notion of molecular rectifiers was
put forward almost two decades ago, a complete theory for
field control of intramolecular electron transfer is not yet in
place, despite interest and extensive work on the subject.
Control of electron transfer rates in dec fields is really fixed
by control of the overall exoergicity AG®, and, in the absence
of relaxation effects, the role of AG* in controlling electron
transfer should be straightforward. The focus of the present
paper is really on assuring controllability of an electron
transfer reaction, by assuring separation of precursor and
successor states. 3? Such separation mirrors the idea of Avi-
ram of a tunnelling bridge, needed to separate the precursor
and successor geometries, to provide two minima on a poten-
tial curve, and to permit actual switching from one to
another. Recent suggestive experiments * make it even more
imperative to understand, in a proper formal way, precisely
how control of intramotecular electron transfer carr be achie-
ved. The notions of relaxation and state accessibility are of
major importance in this area, as is the dissipation of energy
into the environment.

The principal focus in this manuscript has been examina-
tion of the existence of precursor or successor complexes in
a simple set of well studied examples based on binuclear
metal complexes. Important findings include: (1) Very slight
changes in the structure of the bridge between the metals
results in major differences in the behavior, including a transi-
tion from Robin/Day II to Robin/Day III classification. This
has been noted previously 2 28 using different approaches. (2)
Extensive delocalization over one side of the molecule is
found even in the Robin/Dayll case; such delocalization,
referred to as a soliton state by Fischer and collaborators, **
is important in calculation of the electronic matrix elements
and coupling energies. (3) Even very small energy barriers
separating precursor and successor states imply very substan-
tial localizations of the wave function on one geometry or
the other, and the concomitant non-orthogonality of precur-
sor and successor states must be dealt with directly. Such
non-orthogonality refers not only to the highest occupied
molecular orbital, but to all of the molecular orbitals calcu-
lated in the two different geometries. (4) Breakdown of the
Condon approximation should be of substantial importance
in these systems, since the mixing depends so strongly on the
nuclear coordinate. (5) The corresponding orbitals method,
which permits inclusion of non-orthogonality effects, is prob-
ably needed to compute directly the tunneling matrix ele-
ments. (6) At the crossing point, the behavior of the lower
potential curve is cuspy: such cuspiness is real, and does not
disappear when many points are calculated.

Because of their extensive experimental importance, and
their easy preparation, binuclear metal complexes will con-
tinue for the foreseeable future to be testing grounds for
controlied intramolecular electron transfer, and other con-
cepts of molecular electronics.
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