Monoclinic

$P 2_{1} / c$
$a=9.049$ (3) \AA
$b=12.898$ (4) \AA
$c=9.391(2) \AA$
$\beta=115.65(2)^{\circ}$
$V=988.0(5) \AA^{3}$
$Z=2$
Cell parameters from 50 reflections
$\theta=7.0-20.9^{\circ}$
$\mu=1.478 \mathrm{~mm}^{-1}$
$T=288$ (2) K
Spearpoint
$0.63 \times 0.38 \times 0.19 \mathrm{~mm}$ Orange
$D_{x}=1.582 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Siemens P3 diffractometer
$\theta / 2 \theta$ scans
Absorption correction:
empirical via 8ψ scans
in 10° steps (Siemens,
1991a)
$T_{\text {min }}=0.724, T_{\text {max }}=0.755$
2425 measured reflections
1742 independent reflections
1432 reflections with
$I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$(\Delta / \sigma)_{\text {max }}<0.001$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.030$
$w R\left(F^{2}\right)=0.078$
$S=1.081$
1738 reflections
98 parameters
H atoms: see below
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0415 P)^{2}\right.$
+0.2846 P]
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
Table 1. Selected geometric parameters $\left(\AA,^{\circ}\right)$

$\mathrm{Pd}-\mathrm{Cl} 1$	$2.3001(10)$	$\mathrm{N} 2-\mathrm{Cl}$	$1.317(5)$
$\mathrm{Pd}-\mathrm{Cl} 2$	$2.3094(11)$	$\mathrm{N} 2-\mathrm{C} 3$	$1.365(5)$
$\mathrm{N} 1-\mathrm{Cl}$	$1.325(5)$	$\mathrm{N} 2-\mathrm{C} 6$	$1.460(5)$
$\mathrm{N} 1-\mathrm{C} 2$	$1.382(5)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.325(6)$
$\mathrm{N} 1-\mathrm{C} 4$	$1.469(5)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.477(7)$
$\mathrm{Cl1}-\mathrm{Pd}-\mathrm{Cl} 2$	$90.49(4)$	$\mathrm{C} 3-\mathrm{N} 2-\mathrm{C} 6$	$125.5(4)$
$\mathrm{Cl}-\mathrm{N} 1-\mathrm{C} 2$	$107.4(3)$	$\mathrm{N} 2-\mathrm{C} 1-\mathrm{N} 1$	$109.0(3)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 4$	$126.5(4)$	$\mathrm{C} 3-\mathrm{C} 2-\mathrm{N} 1$	$107.4(4)$
$\mathrm{C} 2-\mathrm{Nl}-\mathrm{C} 4$	$125.8(3)$	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{N} 2$	$107.6(4)$
$\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 3$	$108.5(3)$	$\mathrm{N} 1-\mathrm{C} 4-\mathrm{C} 5$	$111.2(5)$
$\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 6$	$125.9(3)$		

Table 2. Hydrogen-bonding geometry $\left(\AA^{\circ},^{\circ}\right)$

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 1 — \mathrm{H} 1 \cdots \mathrm{Cl1} 1^{1}$	0.96	2.79	$3.527(5)$	134
$\mathrm{C} 2 — \mathrm{H} 2 \cdots \mathrm{Cl1}$				
$\mathrm{C} 3-\mathrm{H} 3 \cdots \mathrm{Cl} 2$	0.96	2.75	$3.666(5)$	160
$\mathrm{C} 6-\mathrm{H} 6 B \cdots \mathrm{Cl} 1^{i}$	0.96	2.74	$3.664(5)$	162
	0.96	2.77	$3.657(5)$	153

Symmetry codes: (i) $-x, 1-y, 1-z$; (ii) $1-x, 1-y, 1-z$.
H -atom refinement was constrained with $\mathrm{C}-\mathrm{H}$ distances of $0.96 \AA$. Methyl H atoms were located in a difference map and then idealized.

Data collection: P3/P4-PC Diffractometer Program (Siemens, 1991a). Cell refinement: P3/P4-PC Diffractometer Program. Data reduction: XDISK (Siemens, 1991b). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990a). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993).

Molecular graphics: SHELXTL/PC (Sheldrick, 1990b). Software used to prepare material for publication: SHELXTL/PC and SHELXL93.

We are grateful to Jonathan E. Stevens for help with the quantum calculations.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FG1431). Services for accessing these data are described at the back of the journal.

References

Carlin, R. T., Fuler, J. \& Hedenskoog, M. (1994). J. Electrochem. Soc. 141, L21-22.
De Long, H. C., Wilkes, J. S. \& Carlin, R. T. (1994). J. Electrochem. Soc. 141, 1000-1005.
Lee, C., Winston, T., Unni, A., Pagni, R. M. \& Mamantov, G. (1996). J. Am. Chem. Soc. 118, 4919-4924.

Levasseur, G. \& Beauchamp, A. L. (1991). Acta Cryst. C47, 547-549.
Scordilis-Kelly, C. \& Carlin, R. T. (1993). J. Electrochem. Soc. 140, 1606-1609.
Sheldrick, G. M. (1990a). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1990b). SHELXTLPC. Version 4.1. Siemens Analytical X-ray Instruments Inc.. Madison, Wisconsin, USA.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crustal Structures. University of Göttingen, Germany.
Siemens (1991a). P3/P4-PC Diffractometer Program. Version 4.23. Siemens Analytical X-ray Instruments Inc.. Madison, Wisconsin, USA.
Siemens (1991b). XDISK. Data Reduction Program. Version 4.20.2PC. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sun, I.-W. \& Hussey, C. L. (1989). J. Electroanal. Chem. 274. 325331.

Valle, G. \& Ettorre, R. (1994). Acta Crust. C50, 1221-1222.
Wavefunction Inc. (1997). PC SPARTAN-Plus. Molecular Modeling for the Desktop. Wavefunction Inc., 18401 Von Karman Avenue, Irvine, CA 92715, USA.

Acta Cryst. (1998). C54, 1596-1600

fac-Tricarbonylchlorobis(pyridine- N)rhenium and fac-Tricarbonylchlorobis(4,4'-bipyridine- N)rhenium

Suzanne Bélanger, Joseph T. Hupp and Charlotte L. Stern
Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA. E-mail: jthupp@chem.nwu.edu

(Received 5 December 1997; accepted 5 May 1998)

[^0](4,4'-bipyridine- N)rhenium(I), $\left[\operatorname{ReCl}\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}(\mathrm{CO})_{3}\right]$, show that both complexes have the expected facoctahedral geometry. The bipyridine complex has local C_{2} symmetry, with the rotation axis bisecting the N -$\mathrm{Re}-\mathrm{N}^{\prime}$ and $\mathrm{OC}-\mathrm{Re}-\mathrm{CO}$ angles. In contrast with closely related tetrameric assemblies which crystallize as porous channel-containing structures, the title compounds form dense crystals which are packed in a herring-bone fashion.

Comment

Neutral Re^{I}-containing 'molecular squares' with the general formula $\left[\operatorname{Re}(\mathrm{CO})_{3}(\mathrm{Cl})(L)\right]_{4}$, where L is a linear bridging ligand, have been under investigation by our group for some time (Slone et al., 1996, 1998; Slone \& Hupp, 1997). The crystal structures of these homometallic rhenium squares (Slone et al., 1996; Bélanger et al., 1998), as well as those of other homometallic and heterometallic squares (Rauter et al., 1994; Stang, Cao et al., 1995; Stang, Chen \& Arif, 1995; Whiteford et al., 1997; Slone et al., 1998), have been shown by X-ray diffraction to possess a channel structure in the solid state. Related experiments have shown that thin films of the neutral tetrarhenium squares exhibit exceptional nanometer-scale porosity which can be exploited in electrochemically detected molecular sieving processes and in the recognition and uptake ('chemical sensing') of selected volatile organic. species (Slone et al., 1998).

We investigated the crystal structure of two monomers, $\left[\operatorname{Re}(\mathrm{CO})_{3}(\mathrm{Cl})(\mathrm{py})_{2}\right]$, (I), where py is pyridine, and $\left[\operatorname{Re}(\mathrm{CO})_{3}(\mathrm{Cl})\left(4,4^{\prime} \text {-bpy }\right)_{2}\right]$, (II), where $4,4^{\prime}$-bpy is $4,4^{\prime}$-bipyridine, as model compounds for the corners of molecular squares with bridging pyrazine and 4,4bpy ligands, respectively. Our goal was to determine if porous structures could also be obtained with monomers. and to compare the geometry of the corners with that of the parent squares.

(I)

(II)

Important bond lengths and angles are given in Tables 1 and 2. Both complexes possess a slightly distorted octahedral geometry around the Re atom. Metal-ligand bond lengths are within the expected range for facial tricarbonyl Re^{I} complexes (Civitello et al.,

1993; Iha \& Ferraudi, 1994; Yang et al., 1994; Catalano et al., 1994; Yam et al., 1995). The $\mathrm{N}-\mathrm{Re}-\mathrm{N}$ angles are 84.8 (2) and 87.0 (2) ${ }^{\circ}$ in (I) and (II), respectively, which compare with the $82-86^{\circ}$ range reported for other $\left[\mathrm{Re}(\mathrm{CO})_{3}(\mathrm{Cl})(L)_{2}\right]$ complexes $\left[L=\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right.$ (Yang et al., 1994); $L=$ quinoline or isoquinoline (Iha \& Ferraudi, 1994)] and the $83-86^{\circ}$ range usually observed in related homo- and heterometallic molecular squares (Slone et al., 1996, 1998; Bélanger et al., 1998).

Fig. 1. ORTEP (Johnson, 1965) drawing of (I) showing the numbering scheme, with ellipsoids at the 50% probability level.

Fig. 2. ORTEP (Johnson, 1965) drawing of (II) showing the numbering scheme, with ellipsoids at the 50% probability level.

The $\mathrm{Cl}-\mathrm{Re}-\mathrm{N} 1-\mathrm{C} 3$ torsion angle in (I) is $49.7(3)^{\circ}$, and the analogous $\mathrm{Cl}-\mathrm{Re}-\mathrm{N} 1-\mathrm{C} 4$ and $\mathrm{Cl}-\mathrm{Re}-\mathrm{N} 3-\mathrm{C} 14$ angles in (II) are $-37.8(6)$ and $-55.7(6)^{\circ}$, respectively. The dihedral angle between the
planes of the aromatic rings of the $4,4^{\prime}$-bpy ligand in (II) are 15.9 (2) and 27.6 (2) ${ }^{\circ}$ for the two crystallographically independent bpy ligands. The two polymorphs of the $\left[\operatorname{Re}(\mathrm{CO})_{3}(\mathrm{Cl})\left(4,4^{\prime}-\mathrm{bpy}\right)\right]_{4}$ molecular square have dihedral angles of ~ 25 (Slone et al., 1996) and 37-39 (Bélanger et al., 1998). In molecular squares with bridging $4,4^{\prime}$-bpy and Pt , Pd , Os or mixed $\mathrm{Pd} /$ Re corners, this angle is near 35° (Fujita et al., 1996; Stang et al., 1995; Leung et al., 1996; Slone et al., 1998).

Compounds (I) and (II) crystallize in a herringbone fashion (Figs. 3 and 4), resulting in a dense packing in the crystal. This study shows that, under the crystallization conditions used, a porous structure is not obtained with $\left[\operatorname{Re}(\mathrm{CO})_{3}(\mathrm{Cl})(L)_{2}\right]$ monomers. These materials are therefore potentially useful as controls for

Fig. 3. Packing diagram for (I) in the bc plane.

Fig. 4. Packing diagram for (II) in the $b c$ plane.
other experiments (sieving, transport etc.) involving the corresponding 'molecular squares'.

Experimental

The title compounds were prepared as described in the literature (Giordano \& Wrighton, 1979). Crystals suitable for X-ray diffraction analysis were obtained by slow evaporation from acetone/toluene solution, for (I), or from acetone/water solution, for (II).

Compound (I)

Crystal data

$\left[\mathrm{ReCl}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{2}(\mathrm{CO})_{3}\right]$
$M_{r}=463.89$
Monoclinic
C2/c
$a=7.4173$ (11) \AA
$b=14.326$ (2) A
$c=13.077$ (3) \AA
$\beta=90.140(13)^{\circ}$
$V=1389.6$ (3) \AA^{3}
$Z=4$
$D_{x}=2.217 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Enraf-Nonius CAD-4 diffractometer
$\omega-\theta$ scans
Absorption correction: analytical (de Meulenaer \& Tompa, 1965)
$T_{\text {min }}=0.21, T_{\text {max }}=0.36$
1392 measured reflections
1297 independent reflections

Refinement

Refinement on F
$R=0.015$
$w R=0.019$
$S=1.95$
1096 reflections
101 parameters
H atoms not refined
$u^{\prime}=1 /\left[\sigma^{2}\left(F_{o}\right)\right]$
$(\Delta / \sigma)_{\max }<0.001$

Mo $K \alpha$ radiation
$\lambda=0.7107 \AA$
Cell parameters from 25
reflections
$\theta=11.0-12.0^{\circ}$
$\mu=8.94 \mathrm{~mm}^{-1}$
$T=153$ (2) K
Block
$0.28 \times 0.26 \times 0.16 \mathrm{~mm}$
Colorless

Table 1. Selected geometric parameters $\left({ }^{\circ},^{\circ}\right)$ for (I)

$\mathrm{Re}-\mathrm{Cl}$	2.447 (4)	$\mathrm{Re}-\mathrm{C} 2$	1.92 (1)
$\mathrm{Re}-\mathrm{NI}$	2.211 (3)	$\mathrm{Ol}-\mathrm{Cl}$	1.160 (5)
$\mathrm{Re}-\mathrm{Cl}$	1.913 (4)	$\mathrm{O} 2-\mathrm{C} 2$	1.18 (1)
$\mathrm{Cl}-\mathrm{Rc}-\mathrm{Nl}$	88.0 (1)	$\mathrm{N} 1-\mathrm{Re}-\mathrm{C} 2$	88.4 (3)
$\mathrm{Cl}-\mathrm{Re}-\mathrm{N} \mathrm{I}^{1}$	86.4 (1)	$\mathrm{N} 1^{\prime}-\mathrm{Re}-\mathrm{C} 2$	92.1 (3)
$\mathrm{Cl}-\mathrm{Rc}-\mathrm{Cl}$	90.1 (1)	$\mathrm{Cl}-\mathrm{Re}-\mathrm{Cl}^{\prime}$	88.5 (3)
$\mathrm{Cl}-\mathrm{Re}-\mathrm{Cl}^{1}$	95.3 (1)	$\mathrm{Cl}-\mathrm{Re}-\mathrm{C} 2$	91.3 (4)
$\mathrm{Cl}-\mathrm{Re}-\mathrm{C} 2$	176.2 (3)	$\mathrm{Cl} 1^{1}-\mathrm{Re}-\mathrm{C} 2$	88.3 (4)
$\mathrm{N} 1-\mathrm{Re}-\mathrm{N} 1^{i}$	84.8 (2)	$\mathrm{Re}-\mathrm{Cl}-\mathrm{Ol}$	177.4 (4)
$\mathrm{Nl}-\mathrm{Re}-\mathrm{Cl}$	93.4 (2)	$\mathrm{Re}-\mathrm{C} 2-\mathrm{O} 2$	178 (1)
$\mathrm{N} 1-\mathrm{Re}-\mathrm{Cl}^{1}$	176.2 (2)		
Symmetry code: (i) $-x, y, \frac{1}{2}-2$.			

1096 reflections with

$$
\begin{aligned}
& I>3 \sigma(I) \\
& R_{\text {int }}=0.099 \\
& \theta_{\max }=25^{\circ} \\
& h=0 \rightarrow 8 \\
& k=0 \rightarrow 16 \\
& l=-15 \rightarrow 15 \\
& 3 \text { standard reflections } \\
& \quad \text { frequency: } 90 \text { min } \\
& \text { intensity decay: }<2.5 \%
\end{aligned}
$$

$\Delta \rho_{\text {max }}=0.9 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.4 \mathrm{e}^{-3}$
Extinction correction: Zachariasen (1967)
Extinction coefficient: $9.2(5) \times 10^{-7}$
Scattering factors from International Tables for Crystallography (Vol. C)

Compound (II)

Crystal data
$\left[\mathrm{ReCl}\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}(\mathrm{CO})_{3}\right]$
$M_{r}=618.06$
Monoclinic
$P 2_{1} / n$
$a=7.126$ (2) \AA
$b=14.658$ (3) \AA
$c=21.517$ (6) \AA
$\beta=98.63$ (2) ${ }^{\circ}$
$V=2222.0(10) \AA^{3}$
$Z=4$
$D_{x}=1.847 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Enraf-Nonius CAD-4 diffractometer
$\omega-\theta$ scans
Absorption correction: analytical (de Meulenaer \& Tompa, 1965)
$T_{\text {min }}=0.65, T_{\text {max }}=0.76$
3956 measured reflections
3853 independent reflections
Mo $K \alpha$ radiation
$\lambda=0.7107 \AA$
Cell parameters from 25 reflections
$\theta=10.0-11.0^{\circ}$
$\mu=5.62 \mathrm{~mm}^{-1}$
$T=153$ (2) K
Needle
$0.41 \times 0.07 \times 0.05 \mathrm{~mm}$
Yellow

2481 reflections with
$I>3 \sigma(I)$
$R_{\text {int }}=0.041$
$\theta_{\text {max }}=24.5^{\circ}$
$h=-8 \rightarrow 8$
$k=-16 \rightarrow 0$
$l=-25 \rightarrow 0$
3 standard reflections
every 0 reflections
intensity decay: $<1 \%$

Refinement

Refinement on F
$R=0.033$
$w R=0.028$
$S=1.49$
2481 reflections
289 parameters
H atoms not refined
$w=1 /\left[\sigma^{2}\left(F_{o}\right)\right]$
$(\Delta / \sigma)_{\text {max }}=0.002$
$\Delta \rho_{\max }=1.3 \mathrm{e} \mathrm{A}^{-3}$
$\Delta \rho_{\text {min }}=-0.8 \mathrm{e} \AA^{-3}$
Extinction correction: none
Scattering factors from International Tables for Crystallography (Vol. C)

Table 2. Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$ for (II)

$\mathrm{Re}-\mathrm{Cl}$	$2.450(2)$	$\mathrm{Re}-\mathrm{C} 3$	$1.914(10)$
$\mathrm{Re}-\mathrm{N} 1$	$2.218(6)$	$\mathrm{Ol}-\mathrm{Cl}$	$1.144(9)$
$\mathrm{Re}-\mathrm{N} 3$	$2.200(6)$	$\mathrm{O} 2-\mathrm{C} 2$	$1.033(8)$
$\mathrm{Re}-\mathrm{C} 1$	$1.939(9)$	$\mathrm{O} 3-\mathrm{C} 3$	$1.152(9)$
$\mathrm{Re}-\mathrm{C} 2$	$1.980(8)$		
$\mathrm{Cl}-\mathrm{Re}-\mathrm{N} 1$	$86.8(2)$	$\mathrm{N} 3-\mathrm{Re}-\mathrm{C} 1$	$174.9(3)$
$\mathrm{Cl}-\mathrm{Re}-\mathrm{N} 3$	$84.5(2)$	$\mathrm{N} 3-\mathrm{Re}-\mathrm{C} 2$	$87.3(3)$
$\mathrm{Cl}-\mathrm{Re}-\mathrm{Cl}$	$97.3(2)$	$\mathrm{N} 3-\mathrm{Re}-\mathrm{C} 3$	$94.1(3)$
$\mathrm{Cl}-\mathrm{Re}-\mathrm{C} 2$	$171.8(2)$	$\mathrm{Cl}-\mathrm{Re}-\mathrm{C} 2$	$90.8(3)$
$\mathrm{Cl}-\mathrm{Re}-\mathrm{C} 3$	$89.4(3)$	$\mathrm{Cl}-\mathrm{Re}-\mathrm{C} 3$	$90.8(3)$
$\mathrm{N} 1-\mathrm{Re}-\mathrm{N} 3$	$87.0(2)$	$\mathrm{C} 2-\mathrm{Re}-\mathrm{C} 3$	$91.2(4)$
$\mathrm{N} 1-\mathrm{Re}-\mathrm{Cl}$	$88.3(3)$	$\mathrm{Re}-\mathrm{Cl}-\mathrm{O} 1$	$178.3(7)$
$\mathrm{N} 1-\mathrm{Re}-\mathrm{C} 2$	$92.8(3)$	$\mathrm{Re}-\mathrm{C} 2-\mathrm{O} 2$	$172.2(8)$
$\mathrm{N}-\mathrm{Re}-\mathrm{C} 3$	$176.0(3)$	$\mathrm{Re}-\mathrm{C} 3-\mathrm{O} 3$	$177.5(8)$

Statistics on the reflections obtained for (I) indicated the noncentrosymmetric space group Cc. Refinement was initially carried out in this space group, but several of the atoms could only be refined with isotropic displacement parameters, and large correlations were present in the refinement. For these reasons, the coordinates were transferred to the centrosymmetric space group $C 2 / c$ where the presence of a twofold rotation angle introduced disorder on the chloride and carbonyl ligands trans to one another, but refinement was improved. The disordered $\mathrm{CO} / \mathrm{Cl}$ ligands were assigned occupancy factors of 0.5 .

Anisotropic refinement was possible for all non-H atoms, except for the C atom of the disordered carbonyl. $\mathrm{CO} / \mathrm{Cl}$ disorder of the type observed in (I) is not uncommon, and unresolved disorder could be responsible for the abnormal displacement parameters associated with the carbonyl ligand trans to the Cl atom. Attempts to obtain a reasonable model for the disorder were not successful, but the presence of unresolved disorder is not unlikely.

For both compounds, data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1993); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation, 1995); program(s) used to solve structures: SHELXS86 (Sheldrick, 1985); program(s) used to refine structures: TEXSAN, software used to prepare material for publication: TEXSAN.

The authors thank Kurt D. Benkstein and Robert V. Slone for preparing the complexes. Acknowledgement is made to Donors to the Petroleum Research Fund, administered by the American Chemical Society, and to the Office of Naval Research, for support of this work. SB thanks the Fonds pour la Formation de Chercheurs et l'Aide à la Recherche (Québec) for funding.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BK1384). Services for accessing these data are described at the back of the journal.

References

Bélanger, S., Hupp, J. T., Stern, C. L., Slone, R. V., Watson, D. F. \& Carrell, T. M. (1998). J. Am. Chem. Soc. Submitted.
Catalano, V. J., Larson, W. E., Olmstead, M. M. \& Gray, H. B. (1994). Inorg. Chem. 33, 4502-4509.
Civitello, E. R., Dragovich. P. S., Karpishin, T. B., Novick, S. G., Bierach, G., O'Connell, J. F. \& Westmoreland, T. D. (1993). Inorg. Chem. 32, 237-241.
Fujita, M., Sasaki, O., Mitsuhashi, T., Fujita, T., Yazaki, J., Yamaguchi, K. \& Ogura, K. (1996). J. Chem. Soc. Chem. Commun. pp. 1535-1536.
Giordano, P. J. \& Wrighton, M. S. (1979). J. Am. Chem. Soc. 101, 2888-2897.
Iha, N. M. \& Ferraudi, G. (1994). J. Chem. Soc. Dalton Trans. pp. 2565-2571.
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
Leung, W.-H., Cheng, J. Y. K., Hun, T. S. M., Che, C.-M., Wong, W.-T. \& Cheung, K.-K. (1996). Organometallics, 15, 1497-1501.

Meulenaer, J. de \& Tompa, H. (1965). Acta Cryst. 19, 1014-1018.
Molecular Structure Corporation (1993). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Molecular Structure Corporation (1995). TEXSAN. Single Crystal Structure Analysis Sofiware. Version 1.7-1. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Rauter, H., Hillgeris, E. C., Erxleben, A. \& Lippert, B. (1994). J. Am. Chem. Soc. 116, 616-624.
Sheldrick, G. M. (1985). SHELXS86. Crystallographic Computing 3, edited by G. M. Sheldrick, C. Krüger \& R. Goddard, pp. 175-189. Oxford University Press.
Slone, R. V., Benkstein, K. D., Bélanger, S., Hupp, J. T., Guzei, I. A. \& Rheingold, A. L. (1998). Coord. Chem. Rev. 171, 221-243.
Slone, R. V. \& Hupp, J. T. (1997). Inorg. Chem. 36, 5422-5423.

Slone, R. V., Hupp, J. T., Stern, C. L. \& Albrecht-Schmitt, T. E. (1996). Inorg. Chem. 35, 4096-4097.

Stang, P. J., Cao, D. H., Saito, S. \& Arif, A. M. (1995). J. Am. Chem. Soc. 117, 6273-6283.
Stang, P. J., Chen, K. \& Arif, A. M. (1995). J. Am. Chem. Soc. 117, 8793-8797.
Whiteford, J. A., Lu, C. V. \& Stang, P. J. (1997). J. Am. Chem. Soc. 119, 2524-2533.
Yam, V. W.-W., Lau, V. C.-Y. \& Cheung, K.-K. (1995). Organometallics, 14, 2749-2753.
Yang, Y.-L., Chen, J.-D., Lin, Y.-C., Cheng, M.-C. \& Wang, Y. (1994). J. Organomet. Chem. 467, C6-8.

Zachariasen, W. H. (1967). Acta Cryst. 23, 558-564.

Acta Cryst. (1998). C54, 1600-1602

An Ethanol-Solvated Copper(II) Complex of 1,3-Bis(2-hydroxybenzylimino)pentane

Tlan-Huey Lu, ${ }^{a}$ Hsueh-Hua Yao, ${ }^{b}$ Jem-Mau Lo ${ }^{b}$ and Shu-Fang Tung ${ }^{c}$
${ }^{a}$ Department of Physics, National Tsing Hua University, Hsinchu, Taiwan 300, ${ }^{b}$ Department of Nuclear Science, National Tsing Hua University, Hsinchu, Taiwan 300, and 'Southern Instrument Center, National Cheng Kung University, Tainan, Taiwan 701. E-mail: thlu@phys.nthu. edu.tw

(Received 24 October 1996; accepted I April 1998)

Abstract

In the title compound, $\left\{2,2^{\prime}\right.$-[1,3-pentanediylbis(nitrilomethylidyne)]diphenolato \}copper(II)-ethanol $(2 / 1), 2\left[\mathrm{Cu}\left(\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}\right)\right] \cdot \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$, the Cu atom is coordinated by an $\mathrm{N}_{2} \mathrm{O}_{2}$ donor set from the imine-phenol ligand in a distorted tetrahedral coordination geometry, with the two phenol O atoms being deprotonated. There are two 'unsolvated' copper complexes and two ethanolsolvated copper complexes in the triclinic unit cell. The $\mathrm{Cu}-\mathrm{O}$ and $\mathrm{Cu}-\mathrm{N}$ distances are 1.891 (4)-1.897 (4) and 1.943 (5)-1.978 (5) \AA, respectively. The angle between the two coordination planes defined by the ligating atoms of one complex ($\mathrm{O} 11, \mathrm{O} 12, \mathrm{~N} 11$ and N12) and those of the other independent complex ($\mathrm{O} 21, \mathrm{O} 22$, N21 and N22) is $49.4(2)^{\circ}$.

Comment

Radioactive copper-labelled compounds have been studied extensively because of their diagnostic and/or therapeutic potential. Thus, we have been interested in the development of suitable ligands that can form stable complexes with this metal. The chemistry of Schiff base ligands has aroused considerable attention, mainly because of preparative accessibility, diversity and struc-
tural variability. Although tetradentate imine-phenol ligands can readily form complexes with copper (John et al., 1994), very few have been characterized. The solidstate structures of monomeric Cu^{11} imine-phenol complexes have been determined so far for the complexes shown schematically below: (I) (Baker et al., 1970), (II) (Cheeseman et al., 1966) and (III) (Yao et al., 1997). We report here the synthesis and characterization of the title compound, (IV).

(I) $R=\mathrm{CH}_{2}-\mathrm{CH}_{2}$
(II) $R=\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}_{6} \mathrm{H}_{4}$
(III) $R=\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}$
(IV) $R=\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CHCH}_{2} \mathrm{CH}_{3}$

In the title compound, the coordination about the Cu atom forms a 6-6-6 chelate ring structure and a distorted tetrahedron with two imine N atoms and two phenol O atoms. There are two 'unsolvated' copper $\left[\mathrm{Cu}\left(\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}\right)\right]$ complex molecules, A, and two ethanol-solvated molecules, B, in the centrosymmetric unit cell. The ethanol solvate is hydrogen bonded to a phenolate O atom $[\mathrm{O} 50 \cdots \mathrm{O} 11=2.851$ (8) \AA] of B. The angle between the two coordination planes, defined by atoms O11, O12, N11 and N12, and atoms O21, O22, N21 and N22, is $49.4(2)^{\circ}$.

The $\mathrm{N}-\mathrm{Cu}-\mathrm{N}$ and $\mathrm{O}-\mathrm{Cu}-\mathrm{O}$ angles in B are 92.2 (2) and $89.6(2)^{\circ}$, respectively. The distortion of the coordination geometry in A is evident in the expansion of the $\mathrm{N}-\mathrm{Cu} 2-\mathrm{N}$ angle [$94.4(2)^{\circ}$] and in the compression of the $\mathrm{O}-\mathrm{Cu} 2-\mathrm{O}$ angle [82.4 (2) ${ }^{\circ}$] from 90°. Inversely, the two trans- $\mathrm{O}-\mathrm{Cu}-\mathrm{N}$ angles in B, $\mathrm{O} 11-\mathrm{Cul}-\mathrm{N} 12$ and $\mathrm{O} 12-\mathrm{Cul}-\mathrm{N} 11$, are 155.9 (2) and $156.1(2)^{\circ}$, respectively, while the $\mathrm{O}-\mathrm{Cu}-\mathrm{N}$ angles in $A, \mathrm{O} 21-\mathrm{Cu} 2-\mathrm{N} 22$ and $\mathrm{O} 22-\mathrm{Cu} 2-\mathrm{N} 21$, are 170.1 (2) and $172.6(2)^{\circ}$, respectively. As a result, the dihedral angle between the two chelate rings defined by Cul, O11 and N11, and Cu1, O12 and N12, in B is $33.0(2)^{\circ}$, which is much larger than the corresponding angle in $A\left[8.8(2)^{\circ}\right]$.

Steric interactions of the propyl, butyl and biphenyl backbones affect the copper coordination geometry significantly in many respects (see Table 1). In the five-membered-ring system with a two-C-atom backbone [complex (I)], the $\mathrm{Cu}-\mathrm{N}$ distances are short (average $1.916 \AA$), and the $\mathrm{N}-\mathrm{Cu}-\mathrm{N}$ angle $\left(82.7^{\circ}\right.$) and the dihedral angle (5.3°) are small. Adding a third C atom to the backbone to make a six-membered chelate ring (A and B) results in increased $\mathrm{Cu}-\mathrm{N}$ lengths, $\mathrm{N}-\mathrm{Cu}-\mathrm{N}$ angles and dihedral angles. Further increasing the backbone size to give a seven-membered ring [complexes (II)

[^0]: Abstract
 Structural analyses for the title compounds, (OC-6-32)-tricarbonylchlorobis(pyridine- N) rhenium(I), [$\mathrm{ReCl}-$ $\left.\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{2}(\mathrm{CO})_{3}\right]$, and (OC-6-32)-tricarbonylchlorobis-

