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Multi-mode quantum rate theory is used to examine the interfacial kinetics of a prototypical organic-radical-generating reaction:
the reduction of the 4-cyano-N-methylpyridinium cation. Charge-transfer-enhanced Raman scattering experiments (R. L. Black-
bourn, et al., J. Phys. Chem., 1991, 95, 10535) previously showed that 13 vibrational modes are coupled to the reduction process.
From a time-dependent analysis of the scattering spectrum, precise coordinate displacement and reorganizational parameters for
each of the modes have now been determined. These parameters, when incorporated into the rate theory, have yielded an
extremely detailed—perhaps unprecedented—description of electrochemical reaction kinetics, including complete descriptions of:
(a) mode-specific barrier effects, (b) mode-specific tunnelling effects, (¢) non-classical activation effects and (d) sum-over states

driving force effects.

It is generally accepted that rates of electron transfer (ET) at
electrochemical interfaces are governed by dynamical effects
(pre-exponential effects) together with activation barrier
effects (exponential effects). Dynamical effects can reflect
either rate-limiting electronic coupling effects (‘non-adiabatic’
reaction kinetics) or rate-limiting nuclear motion (solvational
or vibrational dynamics; ‘adiabatic’ reactivity). Numerous
examples of both adiabatic and non-adiabatic behaviour have
now been documented and several insightful reviews have
recently appeared.'™> Although dynamical effects clearly are
important, our focus here is on barrier phenomena, with a
particular emphasis on mode-specific vibrational effects.
Much like adiabatic dynamical effects, barrier effects exist
because of differences in solvation energy for oxidized and
reduced species and differences in internal molecular structure
(i.e., bond length and bond angle differences or, equivalently,
normal coordinate displacements).®® In contrast to pre-
exponential effects, they are usually strongly dependent on
temperature and electrochemical potential, at least under con-
ditions of low to intermediate driving force.

A guantitative understanding of barrier effects (and overall
rate effects) for any particular reaction obviously requires a
quantitative knowledge of the magnitude of the factors con-
tributing to the barrier. Solvent barrier effects typically have
been estimated via theoretical modelling or, less commonly,
by experimentally varying a key parameter such as the reac-
tant to electrode separation distance>® or the reactant size.*®
Vibrational barrier heights, on the other hand, have most
often been derived from X-ray crystallographic or solution
EXAFS measurements of reactant and product bond-lengths.
Bond-length differences (ET-induced local coordinate dis-
placements, Ax) can be combined with local-mode force con-
stants, f, to yield classical vibrational barrier heights,
AG¥(class), under exchange conditions (zero driving force
conditions):%~®

AGY(class) = (1/4)bf (Aa)* = y,4/4 M

In eqn. (1), b is the number of equivalent bonds undergoing
displacement and ., is the vibrational portion of the Marcus
reorganization energy. If more than one type of bond changes
length upon ET then eqn. (1) additionally includes an appro-
priate summation.

The X-ray approach and eqn. (1) are most readily applic-

able when: (a) both redox forms are stable, (b) the number of
bond types is small, and (¢) local modes can easily be related
to normal modes. High-symmetry metal complexes such as
octahedral aquo-complexes are representative of systems for
which this approach works well.!**? In contrast, organic-
radical-generating redox reactions such as reaction (I) can
present real difficulties for the traditional X-ray approach,
not only because of chemical irreversibility (structurally
unstable product states), but also because of the vibrational
complexity inherent to charge transfer to or from aromatic =
or ©* type systems. Recently we showed that an alternative
methodology based on a time-dependent analysis of reso-
nance Raman spectra'®~1¢ could be used to assess vibrational
reorganizational barriers for these kinds of systems.'” The
alternate approach requires the generation of an optical
charge transfer transition that is functionally equivalent to the
electrochemical reaction. Specifically for reaction (I) we have
observed that the combination of iodide as an electron donor
and N-methyl-4-cyanopyridinium as an electron acceptor
yields an appropriate visible region (4,,, =428 nm) tran-
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The availability of an accessible charge transfer transition
provides a basis for resonance enhancement of Raman scat-
tering. A key point, however, is that enhancement effects arise
only for those vibrational modes that experience a net dis-
placement upon charge transfer.!>~'7 A time-dependent
analysis of the scattering spectrum!®~*% then permits scat-
tering intensities to be related in a quantitative fashion to
unitless normal coordinate displacements (4). ,

In preliminary reports,!”'8 an approximate form of the
scattering theory was used to estimate coordinate displace-
ments and mode-specific contributions to reorganization ener-
gies for reactions (I) and (II). Here we employ a more
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sophisticated and complete form of the theory!® to obtain
much more accurate estimates of displacement and reorgani-
zational or barrier effects for each of the 13 vibrational modes
involved in the charge-transfer process. For this uniquely well
described system we then employ a complete multi-mode
quantum rate theory?°~2? to understand in a quantitative
sense the role of every Franck-Condon-active vibration in
defining the electrochemical-exchange kinetics. Particular
attention is paid here to so-called nuclear tunnelling effects
that can arise when thermal activation of specific vibrations is
encumbered. Finally, we employ the rate theory to understand
how specific vibrational reorganizational effects, together with
solvent effects, can influence the temperature dependence and
the potential dependence of the electrochemical reaction rate.

Results and Discussion
Vibrational displacements and mode-specific reorganizational
contributions

Electronic transitions, such as reaction (II), are necessarily
accompanied by a redistribution of charge which: (a) induces
normal coordinate displacements, and (b) causes local changes
in polarizability. From the time-dependent theory of Raman
scattering, the relationship between the polarizability tensor
for resonant or near-resonant scattering, «,;, and the coordi-
nate displacement, 4,, for mode k is given by the half-Fourier
transform of the overlap of a wave packet, ¢(), moving on the
upper potential energy surface (Fig. 1) and a vibrational wave
function, ¢;, on the lower surface:!>1°
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In the equations, k is Planck’s constant, ¢ is time, w is 27 times
the incident frequency, o, is the 2= times the mode frequency,
Ego is the electronic gap, n(k) is the vibrational quantum
number of the kth mode on the ground electronic surface, and
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Fig. 1 Time-dependent representation of near-resonant Raman scat-
tering
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I' is a homogeneous damping term (dephasing term), which
acts to kill the wavepacket on the excited-state surface. Fol-
lowing Myers,'® two terms involving y(optical) [the solvent
reorganization energy for reaction (II)] and the temperture
have been added to eqn. (2). The first term (real term) acts as
an inhomogeneous broadening or damping term (similar to
I), and the second term (imaginary term) acts as an energy
shift (since the solvent modes have Franck—Condon activity).
For eqn. (2) and (3), the connection to experimental observ-
ables comes from the square root relationship between scat-
tering intensities and tensor elements. In addition, as noted by
Heller,"? the full Fourier transform of the vibrational overlap
yields the absorption spectrum, which, of course, is also
experimentally accessible. To determine displacements for
reactions (I) and (II), we made use of the previously reported
relative scattering intensities, I,, and the charge-transfer
absorption spectrum shown in Fig. 2 (solid and dashed lines).
Simultaneous fitting yielded the displacement parameters
listed in Table 1, the relative scattering intensities shown in
Fig. 3 and the absorption spectrum (dashed line) shown in
Fig. 2. [In generating the fits, we treated E,, and y, (optical)
as adjustable parameters and assumed that the electronic de-
phasing effects, described by I', were small. While very good fits
to the experimental scattering spectrum could be obtained for
a range of energy gaps and solvent reorganization energies, we
found that the quality of the fit to the experimental adsorption
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Fig. 2 Normalized absorption spectrum for 4-cyano-N-methyl-
pyridinium iodide. Solid line experimental spectrum. Dotted line:
gaussian fit to the lowest energy charge-transfer component of the
spectrum [reaction (II)]. Dashed line: spectrum obtained from time-
dependent theory with E,, = 15800 cm™*, y(optical) = 1500 cm™!
(18 kJ mol™!), T = 10 cm ™! and A values from Table 1.
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Fig. 3 Normalized experimental Raman scattering intensities (dark

columns) and calculated scattering intensities (light columns) for 4-
cyano-N-methylpyridinium iodide based on 514.5 nm excitation



Table 1 Vibrational and reorganizational parameters for 4-cyano-N -methylpyridinium reduction

relative scattering

mode frequency/cm ™! intensity 14| ¥ vib/kJ mol ! assignment
1650 1.00 1.19 14.1 WC=C)
1490 0.25 0.64 3.6 J,(CH,)
1290 0.20 0.64 31 y(N—CH;)
1234 0.38 091 62 wC==NCH,)
1213 0.32 0.85 52 &(C—H) (ring)
1182 0.99 1.53 16.5 (ring breathing)
844 0.42 1.32 8.9 6(C—H) (ring)
724 0.03 0.10 0.7 y(C—H) (ring)
678 0.08 0.69 1.9 y(C—H) (ring)
590 0.12 0.97 34 Y C=NCH;)
551, 0.15 1.16 44 8(C=N=C)
416 0.19 1.69 7.1 YCH,)

total 79.9

spectrum was much more sensitive to these parameters. [The
reported displacement data reflect the Raman fitting obtained
by using the ‘best’ set of E,, and g (optical) values.] Mode-
specific contributions to the vibrational reorganizational
energy (Table 1) were obtained from unitless normal coordi-
nate displacements by using eqn. (4). The total

Xuiv = 0.54%y )

vibrational reorganization energy for reaction (II), or equiva-
lently reaction (I), is 6700 cm ™! (80 kJ mol™ %) and is given by
the sum of x,, values.

A comparison of the data in Table 1 to previously reported
results'” reveals both similarities and differences. The most
important differences are a greater role, in Table 1, for high
frequency modes and a greater total vibrational reorganiza-
tion energy (ca. 20% greater than previously estimated). The
differences primarily reflect limitations in the approximate
‘Savin’s rule’ analysis used earlier. This analysis emphasizes
the 4? scaling of intensities suggested by eqn. (3), but neglects
the rather complex interplay between overlap terms implied
by the product function in eqn. (3). Also contributing to
parameter differences is the specific treatment of solvent reor-
ganizational and broadening effects (dephasing effects) in eqn.
(2),'® but not in the earlier analysis. In any case, the current
results should be regarded as more accurate.

Finally, we note that the connection between normal coor-
dinate displacements [unitless and bond-length changes (local
coordinate displacements having units of distance) can be
complex. For example, the normal mode at v = 1182 cm™! in
Table 1 involves simulataneous changes in two C—N and
four C—C bonds.)] Occasionally, however, symmetry or other
factors can render local and normal modes physically equiva-
lent. Under these conditions, the two types of displacement
parameters can be interconverted via eqn. (5):

|Aa| = (4%h/pvb)’? ©)

where u is a reduced mass.

Classical rate calculations. To place subsequent multimode
quantum rate simulations in context, we start with a classical
Marcus-type interfacial rate calculation with acetonitrile as
solvent. To motivate the calculation we assume that the reac-
tion site is the outer Helmholtz plane, the reaction kinetics. are
marginally non-adiabatic at 298 K and that the inverse of the
longitudinal relaxation time of the solvent (acetonitrile??) is an
acceptable dynamical benchmark. We recognize that each of
these assumptions is open to criticism. However, since our real
interest here is mode-specific vibrational rate effects, we
require only that the assumptions be reasonable enough to
provide a basis for relative comparisons of vatious representa-
tions of vibrational barrier and kinetic effects.

According to classical ET theory, the rate constant (kgy) for
non-adiabatic, outer-sphere electron transfer at an electro-

chemical interface can be expressed as:®
kgy = dd(4n*H?,/h)(4myRT)™ 2exp[ — AG*(class)/RT] (6)
where
AG*(class) = [(F/RTXE; — E) + x1%/4% (7

In the equations, éd is an effective reaction zone thickness
(taken as 0.6 A)** H,, is an electronic coupling matrix
element, F is the Faraday constant, E is the electrochemical
potential, E is the formal potential and y is the total reorgani-
zation energy. The non-adiabaticity assumption (above) yields
4 x 10> ™! for the product of the two quantities in parenth-
eses in the pre-exponential portion of eqn. (6). [The param-
eters needed to generate this (arbitrary) value are H,, = 130
cm ™" and x = 9700 cm™! (116 kJ mol~1).] Fig. 4 illustrates
the relationships among the classical parameters.

To estimate the solvational component of y we again
assume that Marcus theory is applicable.®

e2\/1 1 1 1
Xs=(7>(rz><n—o;a) ®

In eqn. (8), e is the unit electronic charge, r is the reactant
radius, R; is the distance from the charged reactant to a corre-
sponding image charge in the electrode, D, is the static relative
permittivity of the solvent and n is its refractive index. The
reactant in reaction (I) is poorly represented as a sphere.
Nevertheless, in order to utilize eqn. (8) we estimated the effec-
tive radius as the cube root of the product of the radii in the

b

energy
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Fig. 4 Schematic representation of relationships between classical
energy and displacement parameters
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x-, y- and z-directions.2526 The value obtained was 2.2 A. To
estimate R, we assumed a closest approach distance with the
4-cyano-N-methylpyridinium ion coplanar to the electrode
surface, but separated from the surface by a chemisorbed layer
of acetonitrile. These assumptions yielded R; = 11 Aandy, =
3000 cm ™! (36 kJ mol~!). [Note that the solvent reorganiza-
tion energy estimated here for the electrochemical reaction
differs (as expected) from the y, value obtained above for the
optical reaction. Note also that the applicability of the
imaging correction is open to question. If it is omitted,
increases slightly (ca. 17%). In the present context, since we
are less interested in obtaining an exact value for y, than in
obtaining a reasonable value that will subsequently permit us
to examine vibrational effects, we will forego any further con-
sideration of the relative merits of alternative solvation
models.] .

If only solvent reorganization is considered, eqn. (6) yields a
standard rate constant.of 1150 cm s~ ! and the rate vs. driving
force behaviour shown in Fig. 5 (solid curve). Addition of the
Raman-derived vibrational reorganization energy, however,
has an enormous effect: the standard rate constant decreases
to 0.20 cm s~ * and the rate vs. driving force behaviour now is
described by the dashed curve in Fig. 5. Note that at high
driving forces, both calculations predict an eventual decrease
of rate with increasing driving force. As pointed out some time
ago by Marcus,>?7 the availability of a continuum of filled
states below the Fermi level (i.e., more positive than the
applied potential) will prevent the observation of inverted
behaviour at a metal electrode/solution interface. Instead, the
kg vs. overpotential response will be given by an integration
of rates over the available donor levels.**8

o0

kgr = constant x g, J exp[ —AG*(E)/RT]

X {1 + exp[(Efermi - E)/RTJ}NI dE (9)

where p,,.. is the density of electronic states in the electrode.
Eqn. (9) differs slightly from the equation presented by
Chidsey* and by Weber and Creager®® in that it makes no
specific assumptions about the form of the rate constant vs.
overpotential (or driving force) relationship. Also, it employs
an electrochemical sign convention, rather than the usual
vacuum sign convention, for the energy terms.

Eqn. (9) was implemented by using a standard ‘trapezoid
rule’ approach. Note that the absolute numerical value of the
integrated rate response depends on the value chosen for p.. -
Since we have no particular knowledge of p.... and since our
focus, in any case, is on Franck—Condon rather than elec-
tronic phenomena, we simply normalized rate constants from
eqn. (9) to the kg value given by eqn. (6) at E = E;. Fig. 6
shows that the effect of the integration is to enhance reactivity

-5t

log kg (classical)

-10

0 -1 -2 -3
overpotential / V

Fig. 5 Calculated classical rate constant vs. driving force curves

[eqn. (6)] for reaction (I). Solid line: behaviour with solvent reorgani-

zation only. Dashed line: behaviour with both solvent and internal

vibrational reorganization. Reorganizational parameters: y, = 3000
em ™! (36 kJ mol ™), g, = 6700 cm ™! (79.9 kI mol ™).
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Fig. 6 Calculated classical rate constant vs. driving force curves for
reaction (I), assuming reorganization of both solvent and interval
vibrational modes. Dashed line: electron transfer exclusively from
states at the Fermi level [eqn. (6)]. Solid line: electron transfer from
all available states [eqn. (9)]. (Curves are arbitrarily normalized at
E = E, ) Reorganizational parameters: y, = 3000 cm ™! (36 kJ mol ™),
Lop = 6700 cm ™t (79.9 kJ mol™1).

preferentially at high driving forces and to eliminate the rate
inversion effect.

Moulti-mode quantum rate calculations. 1 Golden rule formu-
lation. A mode-specific evaluation of interfacial ET reactivity
requires a quantum mechanical or ‘spectroscopic’ formulation
of the rate equation. For non-adiabatic reactions, the essence
of this approach is Fermi’s golden rule, which states that the
first-order rate constant (in this case, the rate constant for the
reaction after the reactant has been positioned at the outer
Helmbholtz plane) will vary as the square of the initial-state
[left hand side of reaction (I)]/final-state [right hand side of
reaction (I)] electronic overlap, H,,, and a weighted density
of final vibronic states (i.e., number of final states per unit of
energy), pup >’

ET rate constant = (4n>H?,/h)p;, (10)

In eqn. (10), the weighting factor is the square of the overlap
of the wavefunctions, X, for the initial vibrational state, lv,
and a manifold of final vibrational states, 2w:

Pvivb = Z [{X 1 X500 |25(81v — &) (11

where ¢,, and ¢,,, are energies of specific vibrational levels and
8 now is the Dirac delta function. If the initial state is ther-
mally equilibrated then a range of vibrational levels will be
populated and the golden rule can be rewritten in more
explicit form as.?2-2%:30

4 2H2
BT rate constant = (%)Q; D

8 v
X eXP<— R1T>I (X | X0 70(ey, — &5,) (12)

where Q, is defined as:
& v
Q=% exp<— R1T> (13)

Fig. 7 provides a schematic representation of the vibrational
overlap component of eqn. (11) for the simple case where only
one mode is displaced. [For a multi-mode representation of
squared overlaps (unitless Franck—-Condon factors) see eqn.
(14), below.] From the figure, the best vibrational overlap (or
largest Franck—Condon factor) is obtained at the intersection
point of the classical potential energy surfaces. Note, however,
that finite overlaps also occur at energies below the intersec-
tion region. From eqn. (10), therefore, ET will occur both at
the classical crossing point [AG*(class)] and at lower (and
higher) energies. Note further that while the overlap criterion




Fig. 7 Schematic representation of initial state/final state vibrational
overlaps at: (i) E=E;, (i) E = E,— 05(F/RT)v and (i) E=E,
—~ (F/RT).

will favour ET at the classical intersection point, the crossing
probability is also necessarily weighted by the Boltzmann
population of the vibrational state. Boltzmann or thermal
effects, therefore, will usually favour crossing at energies below
the intersection point. From this perspective, the essence of
the classical theory is the approximation that Franck—Condon
factors are unity at the classical intersection point and zero at
all other energies. If the approximation is completely satisfied
then the thermally averaged Franck—Condon factor, FC, can
be equated with exp[ —AG*(class)/RT]. To the extent that the
approximation is not satisfied: (a) FC, under exchange condi-
tions, will exceed exp[ —AG*(class)/RT] and (b) the quantum
ET rate constant, under exchange conditions, will exceed the
classical rate constant.

An additional element of eqn. (10) and (11) is the require-
ment that energy be conserved (note the delta function ...
during the crossing process. This, in turn, implies that energy
matching for initial and final vibrational states must be
accomplished. In Fig. 7, energy matching is achieved in cases
(i) and (iii), but not (ii). In case (i), therefore, ET should shut
off and remain off until the driving force is sufficient [cf. case
(iii)] to bring the vibrational levels back into resonance. Fig. 8
shows the hypothetical behaviour [after application of eqn.
(8)] of a single-mode system involving essentially no solvent
reorganization. {Eqn. (9) was employed with FC(E) in place of
exp[ —AG*(E)/RT].} Note that well-defined steps occur in the
rate constant vs. driving force plot in energy increments corre-
sponding to the vibrational spacing in Fig. 7.

log k. (single mode)
S

0 -1 -2 -3
overpotential / V

Fig. 8 Calculated sum-over-states rate constant vs. driving force
behaviour [eqn. (9), (10) and (14)] for a hypothetical single-mode
system featuring v = 2250 em™*, A = 3.5, y, = 0.5 kJ mol™! (=0 kJ
mol~?) and reaction zone and pre-exponential factors of 6 x 10™° ¢m
and 4 x 10*2 s71, respectively.

In real systems, energy mismatches (and structure in the log
kgr vs. E plot) can be overcome via involvement of a thermally
equilibrated solvent having a quasi-continuum of energy
levels. Extension of the reaction of cases where two, three or n
vibrational modes participate implies the extension of Fig. 7
to three, four or n + 1 dimensions. Energy sharing among the
many modes to be activated then provides an additional
mechanism for achieving energy matching.

2 Implementation. To implement the golden rule approach
for the reduction of 4-cyano-N-methylpyridinium, we make
use of the formulation of Jortner and Bixon?° for p,, as
described further by Brunschwig and Sutin?? and by Spears et
al 3!

(a) (b)
la % NS A\ ™\
Py = (dry kT) ™12 exp{—[z hy coth(hvj/ZkT)]}
i
©
s
+too 7 Y
X n 2 exp(m; hv,/kT)I,, |[S; csch(hv;/2kT)]
S @
r N N
(AE + x,+ Y. m;hv)?
N expl: — ] (14

In eqn. (14), § equals 4%/2, m is the change in vibrational
quantum number and I is a modified Bessel function of order
m (where the Bessel function serves as an approximation to
some rather intricate ladder operators®? required to obtain
correct Franck-Condon sums). AE is the energy of the final
state minus the energy of the initial state and can be equated,
after units conversion, with the overpotential for an electro-
chemical reduction reaction. The first and third summations
and the product term encompass all modes (other than clas-
sical solvent modes) that are Franck-Condon active. The
quantum number summation (second summation) technically
is infinite, but generally converges if levels from —10 to +10
are considered. (Computational cut-off criteria permitted us to
evaluate an even smaller range of m values in several cases.)
The overall form of eqn. (14) obviously is fairly complicated.
Briefly, however, terms (b) and (¢) collectively describe how

vibrational overlaps in a fully thermally equilibrated, multi-

mode system depend on vibrational displacement, frequency,
quantum number and temperature; term (d) describes energy
matching (energy conservation) effects, including solvent
broadening effects. In the classical theory [eqn. (6)] term (a) is
a component of the electronic prefactor and arises in a
straightforward way from Landau—Zener theory.?%:33:34 Curi-
ously, however, the same term in the quantum treatment is
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better viewed as a component of the vibrational density of
states parameter [eqn. (11)].22

To obtain interfacial ET rate constants we have assumed
that eqn. (6) can be adopted, but with quantum parameters
[eqn. (14)] replacing the classical parameters:

gy = 5r(4n2Hf2/h)pvib (15

While programs based on eqn. (14) and (15) can be extended
to include an arbitrarily large number of modes, j, we encoun-
tered unacceptably long computational times when j exceeded
five or six. To reduce the computational time, modes of
similar frequency were grouped and averaged. Displacements
for each of the resulting composite modes were then adjusted
such that their contributions to the reorganization energy
each equalled the sum of the contributions of the pertinent
individual modes to the reorganization energy. For each
group of modes, rate calculations were then run with and
without averaging in order to verify that averaging did not
affect computational outcomes. [Obviously, continuing
improvements in computer performance can be expected to
decrease the need for mode averaging in future studies,
however, because the computational time scales roughly as
the factorial of the product of the number of modes evaluated
and the number of quantum number changes considered per
mode, it is unlikely that mode averaging for large systems
(greater than a dozen modes) can be altogether eliminated in
the near future.]

3 Results. Fig. 9 (dashed line) shows the dependence of the
fully quantum mechanical rate constant [kgr, eqn. (15)] on
driving force, where the plot was constructed by using five
blended vibrational modes and one fully classical mode
(solvent mode). In contrast to the corresponding classical rate
plots in Fig. 5, this plot displays a marked driving-force asym-
metry, i.e, a much weaker dependence of kpy on AE in the
inverted region than in the normal region. The solid line in
Fig. 9 shows the dependence of the quantum mechanical rate
constant on driving force after accounting for so-called ‘sum-
over-states’ effects [eqn. (9)]. To understand how specific
modes affect reactivity, several additional calculations were
performed under exchange conditions (zero overpotential). In
the calculations, modes were progressively eliminated and the
rate was re-evaluated. The ratio of rates without and with the
desired mode then yielded a rate attenuation factor for that
mode. Table 2 shows that: (i) all Raman active modes exert a
rate attenuation effect, (if) the attenuation effects scale roughly
with the mode specific reorganization energy and (iii) the
largest single attenuation effect (ca. factor of 3) comes from a
ring-based C==C stretching mode at 1650 cm™!. Thus, no
single vibration exerts a dominant rate attenuation effect,
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Fig. 9 Calculated multi-mode quantum mechanical rate constant vs.
driving force curves for reaction (I). Dashed line: electron transfer
exclusively from states at the Fermi level. Solid line: electron transfer
from all available states. Reorganizational parameters: y, = 3000
cm™* (36 kJ mol™!); normal coordinate displacements and ¥, values
taken from Table 1.

although collectively the 13 vibrations exert a very substantial
effect. Finally, an additional comparison shows (reassuringly)
that when all vibrational reorganizational contributions are
eliminated, the calculated quantum rate constant fully con-
verges to the ‘solvent only’ classical rate constant of 1150 cm
s, described above. (The ‘solvent only’ quantum calculation
was carried out by using dummy modes having infinitesimal
displacements and, therefore, infinitesimal y;, values.)
Returning to the rate vs. driving force curves in Fig. 9, the
asymmetry in the dashed curve is a clear computational mani-
festation of enhanced nuclear tunnelling effects in the inverted
region. While the sum-over-states integration largely masks
these effects, other manifestations of non-classical behaviour
exist. Most notably, the quantum mechanical exchange rate
constant (5.0 cm s~ exceeds the classical exchange rate con-
stant by a factor of 25. Again, the rate enhancement effect can
be interpreted as a nuclear tunnelling phenomenon. This effect
was further explored by performing calculations as a function
of temperature. The calculations are summarized in Fig. 10 in
the form of modified Eyring plots (T*/* pre-factor variation).
The slopes of the plots, when multiplied by —1/R, yield effec-
tive activation enthalpies. Particularly noteworthy are: (i) the
strong temperature dependence of the quantum mechanical
activation enthalpy (albeit, largely at experimentally inaccessi-
ble temperatures), and (ii) the much smaller value, even at
room temperature, for AH* (quantum) in comparison with
AH* (classical). The enthalpy parameter when combined with
the exchange rate constant also yields, in the quantum mecha-
nical case, an apparent activation entropy equalling —24 J

Table 2 Mode-specific kinetic parameters for 4-cyano-N-methylpyridinium reduction

rate-attenuation

isolated nuclear sequential nuclear

mode frequency/cm ! factor tunnelling factor® tunnelling factor®
416 2.04 1.07 1.07
551 1.51 1.07 1.07
590 1.38 1.06 1.05
678 1.19 1.04 1.03
724 1.09 1.02 1.00
844 2.06 1.29 1.29
1182 2.88 202 2.35
1213 1.42 1.26 1.10
1234 1.48 1.33 1.32
1290 1.22 1.16 1.15
1490 1.30 1.22 1.31
1650 2.01 1.36 2.21
2250 1.20 1.41 1.40

total product: 230 15 25

?Calculated by making only a single mode behave classically (see text). ® Calculated by progressively converting quantum mechanical modes to

classical modes and determining incremental tunnelling effects.
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Fig. 10 Modified Eyring plots for reaction (I) based on sum-over-
states classical (solid line) and multi-mode quantum mechanical
(dashed line) rate constant calculations. At 298 K the slopes of the
plots yield effective classical and quantum mechanical activation enth-
alpies of 29 and 14 kJ mol ™!, respectively. Reorganizational param-
eters identical to those in Fig. 9.

K~ mol~*! at 298 K. (The apparent activation entropy is zero
in the classical case.) Negative apparent activation entropies,
when obtained at E = E;, typically are interpreted as non-
adiabaticity factors (i.e., factors reflecting inefficient electron
tunnelling). Here, however, the apparent activation entropy is
associated strictly with the Franck-Condon sums and must be
regarded, therefore, as a nuclear tunnelling effect.

One further manifestation of the tunnelling effect is a slight
perturbation of the calculated transfer coefficient, « [defined
as (—RT/F) log(kgr)/dE]. At 298 K, under exchange condi-
tions and without rate integration, both ofclassical) and
o{quantum mechanical) are necessarily 0.5 (since we have
neglected any oxidation-state-dependent changes in vibra-
tional frequencies). After sum-over-states integration [eqn. (9)]
both calculations yield transfer coefficients of slightly greater
than 0.5 at E = E,. Again since oxidation-state-dependent
changes in vibrational frequencies have been neglected, log kyy
vs. E plots for the reverse reaction (i.e., oxidation) are mirror
images of those for the reduction reaction and calculated
transfer coefficients for the oxidation reaction are also greater
than 0.5. This leads to the somewhat worrisome result that the
sum of oxidative and reductive transfer coefficients, calculated
at the same potential, exceeds the number of electrons
transferred—a finding that is generally regarded as impossible
because it ultimately implies violation of microscopic reversi-
bility at potentials other than the formal potential. Further
consideration of Fig. 8 and 9 and eqn. (9) provides some
insight: the axes labelled as overpotential or driving force
actually describe the energy difference between the Fermi level
(applied potential) and the formal potential. Because rate con-
tributions are summed over all electronic states, however, the
average driving force is always somewhat less than the driving
force implied by the figures. Thus at an applied potential
equalling E;, the reduction reaction, on average, occurs at a
potential slightly positive of E; ; the oxidation reaction occurs,
on average, at a different potential that is slightly negative of
E,.

Returning to tunnelling effects, Fig. 11 shows that at high
driving forces o (quantum mechanical) and e(classical) both
approach zero. In the intermediate region, however, the two
transfer coefficients differ. The differences suggest a caveat for
related experimental studies where the reorganization energies
are derived from fits of the shapes of the log kg vs. over-
potential curves.*?8:35-38.The assumed fitting function is gen-
erally the classical Marcus response [eqn. (7) and (9)]. The
range of the fit is typically limited (by experiment) to the lower
half or two thirds of the rate-constant plot. While most of the
systems examined in this way have indeed been largely clas-
sical (i.e., dominated by solvent reorganization and, therefore,
adequately characterized by this approach),*28:35-38 e
suggest more generally that the fitting strategy may lead to
errors when significant nuclear tunnelling effects and high-
frequency Franck—Condon activity exist.

0.50

0.25}

transfer coefficient

0.00}

overpotential / V

Fig. 11 Dependence of calculated classical (solid line) and quantum
mechanical (dashed line) transfer coefficients on overpotential at 298
K. Reorganizational parameters identical to those in Fig. 9.

To pinpoint the origins of the non-classical rate effects we
carried out several additional ambient temperature calcu-
lations. In each of these calculations, a specific (non-blended)
mode from Table 1 was included as a sixth vibrational mode
in the quantum mechanical rate calculation, while conserving
the total reorganization energy. The isolated mode was then
made fully classical (i.e, combined with ) and the rate con-

stant was recalculated. The ratio of the fully quantum mecha-

nical rate constant to the partially quantum mechanical rate
constant (Table 2) was then taken as a measure of the mode-
specific contribution to the non-classical rate effect (nuclear
tunnelling effect). (Hence each calculation involved effectively
involved 12 quantum modes and one classical mode.) Inspec-
tion of the table shows: (i) that significant non-classical effects
are observed only for medium to high frequency vibrational
modes, but (i) not all such modes contribute significantly.
Indeed, further comparison shows that in addition to high fre-
quencies, large reorganizational effects (Table 1) are required
in order for modes to provide significant nuclear tunnelling
contributions.

Additional analysis shows that the product of mode-specific
tunnelling factors in Table 2 yields a total tunnelling factor of
15, i.e., somewhat less than the factor of 25 expected from the
ratio of kg{quantum mechanical) to kpr(classical). The origin
of the discrepancy lies in the way prefactors [y, !/? terms in
eqn. (6) and (14)] change when isolated quantum modes are
made classical vs. the behaviour obtained when all quantum
modes are made classical. In light of the discrepancy, mode-
specific tunnelling effects were also evaluated by progressively
converting quantum modes to classical modes, beginning with
the lowest frequency mode. The results are listed in Table 2.
When calculated in this way, the product of the mode-specific
tunnelling factors does yield 25 for the total tunnelling factor.
The tunnelling contribution ascribed to a particular mode,
however, is now slightly dependent upon the order in which
the modes are considered.

Finally, we note that the tunnelling terminology implies a
finite activation barrier penetration probability. Barrier pen-
etration is most probable when the reduced mass of the tun-
nelling entity (e.g., a particular atom or group of atoms within
the molecule) is small and the corresponding vibrational fre-
quency is large. Ap alternative but equivalent view emphasizes
the dependence of the vibrational wavefunction shapes and,
therefore, overlaps, on vibrational frequency. Fig. 12 illus-
trates the idea for a pair of hypothetical single-mode reactions
having identical classical activation barrier heights and reor-
ganization energies, but very different mode frequencies. In
both cases the lowest vibrational wavefunctions are centred
on the minimum on the classical reactant or product
potential-energy surface. The wavefunctions for the low-
frequency vibration, however, are much more strongly local-
ized than those for the high-frequency vibration.
Consequently, very little initial-state/final-state vibrational
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Fig. 12 Schematic representation of vibrational overlaps for high fre-
quency (top diagram) and low frequency (bottom diagram) systems

overlap is obtained at this level and reactivity is achieved only
after classical activation. For the high-frequency system, on
the other hand, the wavefunctions are much more diffuse. It
follows that significant overlap and, therefore, significant reac-
tivity, can be obtained even in the absence of activation. From
a spectroscopic perspective, therefore, net reactivity (finite
overlap) without full thermal activation is the basis for the
non-classical ET rate effect.

Conclusions

The multi-mode quantum rate analysis clearly illustrates the
importance of vibrational reorganizational effects in defining
the interfacial reactivity of a representative organic cation—
neutral-radical system, 4-cyano-N-methylpyridinium*/°. For
this system, a time-dependent analysis of Raman scattering
effects shows that the total vibrational reorganization energy
is 6700 cm~! (80 kJ mol™!) and that the reorganizational
effects are distributed over more than 12 distinct modes. Inser-
tion of the reorganizational information into the rate theory
leads to an extremely detailed—perhaps unprecedented—
description of the kinetic effects induced by internal reorgani-
zation. Individual vibrational modes exert anywhere from
factor of 1 to 3 attenuation effects upon the calculated
exchange rate constant.

Further analysis via the quantum rate theory also provides
insight into non-classical kinetic effects. The calculated effects
include substantial rate accelerations, substantial effective
barrier lowering (decreased Eyring slope) and significantly
diminished transfer coefficients. A mode specific analysis
shows that the largest single calculated contribution to the
non-classical rate behaviour comes from a C=C stretching
mode, which is characterized by both a large displacement
and a high vibrational frequency. Finally, while the time-
dependent analysis is by no means general, we believe that it
can be profitably applied to a substantial number of inter-
facial electron transfer reactions. Indeed, we intend to report
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shortly on related reactions involving hetxacyanoferrate(ti)
and nitrobenzene reduction at semiconductor/solution inter-
faces and hexamethylbenzene oxidation at the metal/solution
interface.
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