Signatures of the Molecular Potential in the Ellipticity of High-Order Harmonics from Aligned Molecules

We explore the information content of the polarization of high-order harmonics emitted from aligned molecules driven by a linearly polarized field. The study builds upon our previous work [Ramakrishna et al., Phys. Rev. A 81, 021802(R) (2010)], which illustrated that the phase of the continuum electronic wave function, and hence the underlying molecular potential, is responsible, at least in part, for the ellipticity observed in harmonic spectra. We use a simple model potential and systematically vary the potential parameters to investigate the sense in which, and the degree to which, the shape of the molecular potential is imprinted onto the polarization of the emitted harmonics. Strong ellipticity is observed over a wide range of potential parameters, suggesting that the emission of elliptically polarized harmonics is a general phenomenon, yet qualitatively determined by the molecular properties. The sensitivity of the ellipticity to the model parameters invites the use of ellipticity measurements as a probe of the continuum wave function and the underlying molecular potential.