

The Ag₂O–V₂O₅–HF_(aq) System and Crystal Structure of α -Ag₃VO₄

Thomas A. Albrecht, Charlotte L. Stern, and Kenneth R. Poeppelmeier*

Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113

Received November 10, 2006

Reactions between the three components Ag₂O, V₂O₅, and HF_(aq) were investigated under hydrothermal conditions, and the recovered phases were, in increasing Ag:V content, Ag₂V₄O₁₁, β -AgVO₃, Ag₄V₂O₆F₂, Ag₄V₂O₇, and α -Ag₃-VO₄. A higher ratio of Ag₂O to V₂O₅, as compared to a stoichiometric ratio, was required to synthesize Ag₄V₂O₆F₂, Ag₄V₂O₇, and α -Ag₃VO₄. Owing to their solubility differences, the crystallization regions are not centered around the respective 2:1 and 3:1 Ag_2O/V_2O_5 tie-lines but rather are centered along the 4:1 and 8:1 Ag_2O/V_2O_5 tie-lines. Reactions with a 4:1 Ag/V ratio either resulted in Ag₄V₂O₆F₂ at 150 °C or Ag₄V₂O₇ at 200 °C. Products were recovered in between 80% and 100% yield based on V₂O₅. Red transparent crystals of α -Ag₃VO₄ crystallize in the monoclinic space group C2/c, with cell parameters a = 10.1885(16) Å, b = 4.9751(8) Å, c = 10.2014(17) Å, β $= 115.754(3)^{\circ}$.

Introduction

Mixed metal oxide fluoride species can be generated in direct hydrothermal reactions of early and late transition metal oxide precursors in the presence of hydrogen fluoride (e.g., (HF)_x•pyridine or HF_(aq)).^{1,2} Whereas numerous inorganic-organic hybrid materials have been made, the use of HF_(aq) has led to purely inorganic oxide fluorides, e.g., Ag₆- $Mo_2O_7F_3Cl$ and $Ag_4V_2O_6F_2$.³⁻⁵ In these reactions, aqueous HF acts as a mineralizer and provides a source of fluoride, which may be incorporated into the product.

Owing to their application as primary battery materials, the silver vanadium oxides have been studied intensely.⁶⁻⁸ While various silver vanadates are known, $Ag_4V_2O_6F_2$ represents the first phase reported in the $Ag_2O-V_2O_5-HF_{(aq)}$ system. This work focuses on the $Ag_2O-V_2O_5-HF_{(aq)}$

- (1) Norquist, A. J.; Heier, K. R.; Stern, C. L.; Poeppelmeier, K. R. Inorg. Chem. 1998, 37, 6495-6501.
- (2) Norquist, A. J.; Heier, K. R.; Halasyamani, P. S.; Stern, C. L.; Poeppelmeier, K. R. *Inorg. Chem.* **2001**, *40*, 2015–2019. (3) Maggard, P. A.; Nault, T. S.; Stern, C. L.; Poeppelmeier, K. R. J.
- Solid State Chem. 2003, 175, 27-33.
- (4) Sorensen, E. M.; Izumi, H. K.; Vaughey, J. T.; Stern, C. L.; Poeppelmeier, K. R. J. Am. Chem. Soc. 2005, 127, 6347-6352.
- (5) Izumi, H. K.; Sorensen, E. M.; Vaughey, J. T.; Poeppelmeier, K. R. U.S. Provisional Patent 60,606,475, September 1, 2004.
- (6) Liang, C. C.; Bolster, M. E.; Murphy, R. M. U.S. Patent 4,310,609, January 12, 1982.
- (7) Liang, C. C.; Bolster, M. E.; Murphy, R. M. U.S. Patent 4,391,729, July 5, 1983.
- (8) Takeuchi, K. J.; Marschilok, A. C.; Davis, S. M.; Leising, R. A.; Takeuchi, E. S. Coord. Chem. Rev. 2001, 219, 283-310.

1704 Inorganic Chemistry, Vol. 46, No. 5, 2007

system to search for additional silver vanadium oxide fluoride phases and to elucidate the relationships between the other majority all-oxide phases formed. During this investigation, the well-known silver vanadium oxides $Ag_2V_4O_{11}$, β -AgVO₃, $Ag_4V_2O_7$, and α - Ag_3VO_4 were generated in addition to the aforementioned Ag₄V₂O₆F₂, of which only Ag₂V₄O₁₁ and β -AgVO₃ previously had been made hydrothermally.^{9,10} The versatility of aqueous hydrofluoric acid to form a wide variety of silver vanadium oxides is noteworthy and appreciable compared to other techniques.

In the 1930's, Britton and Robinson more thoroughly investigated solutions of silver and vanadium salts first studied in the late 1800's.¹¹ Of interest were the ionic species remaining in the solutions upon precipitation of AgVO₃, $Ag_4V_2O_7$, and Ag_3VO_4 . For example, in solutions targeting a Ag₃VO₄ precipitate, the ions present were not Ag⁺ and VO4³⁻ but rather Ag⁺, HVO4²⁻, and OH⁻. Konta et al. also studied solution chemistry of silver vanadium oxides by varying the pH between 7 and 14 and the temperature between 273 and 298 K, and various oxides such as α -AgVO₃, β -AgVO₃, Ag₄V₂O₇, and Ag₃VO₄ were synthesized from aqueous solutions of AgNO₃ and either NH₄VO₃ or Na₃VO₄.¹² Moreover, solid-state reactions between Ag₂O and V₂O₅ have been used to form the aforementioned silver

- (10) Liu, Y.; Zhang, Y.; Hu, Y.; Qian, Y. Chem. Lett. 2005, 34, 146-147. (11) Britton, H. T. S.; Robinson, R. A. J. Chem. Soc. Abstr. 1930, 2328-
- 2343. (12) Konta, R.; Kato, H.; Kobayashi, H.; Kudo, A. Phys. Chem. Chem. Phys. 2003, 5, 3061-3065.

10.1021/ic062138+ CCC: \$37.00 © 2007 American Chemical Society

Published on Web 01/24/2007

^{*} To whom correspondence should be addressed. E-mail: krp@ northwestern.edu.

⁽⁹⁾ Mao, C.; Wu, X.; Pan, H.; Zhu, J.; Chen, H. Nanotechnology 2005, 16, 2892-2896.

vanadates and two others, AgV₇O₁₈ and Ag₂V₄O₁₁.¹³ Included in these reports were the transition temperatures between α -, β -, and γ -AgVO₃ phases. Since then, crystal structures for Ag₂V₄O₁₁, α - and β -AgVO₃, and Ag₄V₂O₇ have been solved and phases such as δ -AgVO₃, β -Ag₃VO₄, and nonstoichiometric compounds, such as Ag_xV₂O₅ and Ag_{1+x}V₃O₈, have been observed.^{14–18} During review of this manuscript, the authors became aware of an independent study on the structures of α - and β -Ag₃VO₄ from refinement of powder X-ray diffraction patterns.¹⁹

Recently, other processes have been reported to synthesize silver vanadium oxides. For example, sol-gel techniques have been used for the synthesis of $Ag_2V_4O_{11}$. The process involves a $V_2O_5 \cdot nH_2O$ gel combined with a silver-containing salt, which is then heated at up to 450 °C for up to 24 h. Another method investigated by Kittaka et al. utilized mechanical ball milling of different ratios of Ag_2O and V_2O_5 to produce amorphous α -AgVO₃, crystalline $Ag_4V_2O_7$, or Ag_3VO_4 with additional phases.²⁰

Very few reports exist in the literature discussing the synthesis of silver vanadium oxides using hydrothermal techniques. Liu et al. produced small microcrystals 18-400 nm wide and lengths of up to tens of micrometers (nanowires) of β -AgVO₃ from solutions of NH₄VO₃ and either Ag₂- CO_3 or $AgC_2H_3O_2$ heated under hydrothermal conditions.¹⁰ Additional phases were also recovered, such as α -AgVO₃, upon variation of temperature, pH, and reagents. Takeuchi et al. proposed the use of hydrothermal methods in the synthesis of the cathode material Ag₂V₄O₁₁ (SVO).²¹ The desired small particle size (<1 μ m in diameter) has potential to improve the modern high-rate SVO batteries by providing higher current pulses more rapidly. Experimental details remain to be specified. However, Mao et al. synthesized 10-30 nm thick, 70-200 nm wide, and 2-5 mm long crystallites (nanobelts) of $Ag_2V_4O_{11}$ from an aqueous solution of V_2O_5 , AgNO₃, and 1,6-hexanediamine heated under hydrothermal conditions at 180 °C for 2 days.9

From the hydrothermal reactions and conditions reported herein, four silver vanadium oxides and one silver vanadium oxide fluoride were observed. Polycrystalline Ag₂V₄O₁₁ and β -AgVO₃ and single crystals of Ag₄V₂O₆F₂, Ag₄V₂O₇, and α -Ag₃VO₄—the structure of the latter is reported here also were synthesized by reaction of the binary oxides Ag₂O and V₂O₅ with HF_(aq) as a mineralizer in a pressure vessel at 150– 200 °C under autogenous pressure. The composition space

- (13) Fleury, P.; Kohlmuller, R. C. R. Acad. Sci. Ser. C 1966, 262, 475–477.
- (14) Kittaka, S.; Matsuno, K.; Akashi, H. J. Solid State Chem. 1999, 142, 360–367.
- (15) Rozier, P.; Savariault, J.-M.; Galy, J. J. Solid State Chem. 1996, 122, 303–308.
- (16) Masse, R.; Averbuch-Pouchot, M. T.; Durif, A.; Guitel, C. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 1983, 39, 1608–1610.
- (17) Onoda, M.; Kanbe, K. J. Phys.: Condens. Matter 2001, 13, 6675-6685.
- (18) Raveau, B. Rev. Chim. Miner. 1967, 4, 729-758.
- (19) Kovalevskij, A.; Dinnebier, R.; Jansen, M. Z. Krist. 2007, in press.
 (20) Kittaka, S.; Nishida, S.; Ohtani, T. J. Solid State Chem. 2002, 169, 139–142.
- (21) Takeuchi, E. S.; Leising, R.; Rubino, R.; Hong, G. U.S. Provisional Patent 20,040,185,346, March 19, 2004.

 Table 1. Crystallographic Data for Ag₃VO₄

formula	Ag_3VO_4
fw	438.55
space group	<i>C</i> 2/ <i>c</i> (No. 15)
a (Å)	10.1885(16)
<i>b</i> (Å)	4.9751(8)
<i>c</i> (Å)	10.2014(17)
β (deg)	115.754(3)
$V(Å^3)$	465.73(13)
Ζ	4
<i>T</i> (°C)	-120(2)
λ (Å)	0.71069
$\sigma_{\rm calcd} ({\rm g/cm^3})$	6.254
μ (mm ⁻¹)	14.266
$R1(F)^a$	0.0295
$wR2(F^2)^b$	0.0771
^{<i>a</i>} R1 = $\Sigma F_{o} - F_{c} / \Sigma F_{o} $.	v^{b} wR2 = $[\sum w(F_{o}^{2} - F_{c}^{2})^{2} / \sum w(F_{o}^{2})^{2}]^{1/2}$.

for $Ag_2O-V_2O_5-HF_{(aq)}$ was constructed by varying the molar ratio of reagents while maintaining a constant total number of moles. Regions in the composition space diagram are outlined on the basis of the identity of the recovered products as determined by powder X-ray diffraction. Though a mixture of products is recovered from reactions when a composition lies on or near a boundary between regions, single phases were formed in the middle of a defined region.

Experimental Section

Caution. Hydrofluoric acid is toxic and corrosive and must be handled with extreme caution and the appropriate protective gear! If contact with the liquid or vapor occurs, proper treatment procedures should be followed immediately.²²⁻²⁴

Materials. Ag₂O (99.5%, DFG), V_2O_5 (99.6%, Alfa-Aesar), and aqueous hydrofluoric acid (48–50% HF by weight, Fisher) were used as received.

Synthesis. Crystals of α-Ag₃VO₄ were prepared from a reaction of 0.5675 g (2.449 × 10⁻³ mol) of Ag₂O, 0.0557 g (3.06 × 10⁻⁴ mol) of V₂O₅, and 0.2522 g of HF_(aq) (6.179 × 10⁻³ mol HF) in a heat-sealed Teflon [fluoro(ethylene–propylene)] pouch.²⁵ The pouch was placed in a 125 mL, poly(tetrafluoroethylene) (PTFE) Teflon-lined Parr autoclave, backfilled with 42 mL of deionized H₂O. Up to seven pouches of varied compositions were simultaneously placed in the autoclave to complete a greater quantity of reactions while using one pressure vessel. The autoclave was heated at 150 °C for 24 h and cooled at a rate of 6 °C/h. The pouch was opened in air, and the contents were vacuum-filtered to retrieve bright red crystals of α-Ag₃VO₄ in 78% yield based on V₂O₅. Identical reaction conditions, other than reagent ratios, were used to make Ag₂V₄O₁₁, β-AgVO₃, and Ag₄V₂O₆F₂. Products were analyzed by powder X-ray diffraction.

Ag₂V₄O₁₁ was made using 0.2678 g (1.155 × 10⁻³ mol) of Ag₂O, 0.4198 g (2.308 × 10⁻³ mol) of V₂O₅, and 0.2328 g of HF_(ag) (5.703 × 10⁻³ mol HF). The product was recovered in 98% yield based on V₂O₅ with a trace of β -AgVO₃.

 β -AgVO₃ was made from 0.2979 g (1.285 × 10⁻³ mol) of Ag₂O, 0.1559 g (8.571 × 10⁻⁴ mol) of V₂O₅, and 0.2572 g of HF_(aq) (6.301 × 10⁻³ mol HF) with 80% recovery based on V₂O₅.

Ag₄V₂O₆F₂ was made as previously reported.⁵

- (24) Peters, D.; Miethchen, R. J. Fluorine Chem. 1996, 79, 161-165.
- (25) Harrison, W. T. A.; Nenoff, T. M.; Gier, T. E.; Stucky, G. D. Inorg. Chem. 1993, 32, 2437–2441.

⁽²²⁾ Bertolini, J. C. J. Emerg. Med. 1992, 10, 163-168.

⁽²³⁾ Segal, E. B. Chem. Health Saf. 2000, 7, 18-23.

Figure 1. Thermal ellipsoid plot (showing 50% probability) of α -Ag₃-VO₄. Vanadium is tetrahedrally coordinated to four oxide ions. Each oxide ion is tetrahedrally coordinated to one vanadium and three silver ions.

Ag₄V₂O₇ was made using 0.3970 g (1.713 × 10⁻³ mol) of Ag₂O, 0.0777 g (4.272 × 10⁻⁴ mol) of V₂O₅, and 0.2561 g of HF_(aq) (6.274 × 10⁻³ mol HF). However, the system was heated for 24 h at 200 °C instead of 150 °C. The product was recovered in 100% yield based on V₂O₅.

Crystallographic Determination. Single-crystal X-ray diffraction data were collected on a Bruker SMART-1000 diffractometer equipped with Mo K α radiation ($\lambda = 0.71073$ Å). Reflections were integrated with the SAINT-Plus program.²⁶ The structure was solved in space group of *C*2/*c* by direct methods and refined against *F*² using full-matrix least-squares techniques.²⁷ The α -Ag₃VO₄ crystal was twinned, and absorption correction on one twinned data set was applied using Twinabs, a part of the SAINT integration program. That set of diffraction points was used to solve the structure including anisotropic displacement parameters before a final refinement with all reflections. See Table 1 for crystallographic data, Figure 1 for a thermal ellipsoid plot, and the Supporting Information for the crystallographic information file.

Powder X-ray Diffraction. Powder X-ray diffraction patterns were collected on a Rigaku XDS 2000 with Ni-filtered Cu K α radiation ($\lambda = 1.5418$ Å) and compared with patterns recorded in the JCPDS (Joint Committee of Powder Diffraction Standards) database.

Results and Discussion

At different mole ratios of Ag_2O , V_2O_5 , and $HF_{(aq)}$ in the hydrothermal system at 150 °C, $Ag_2V_4O_{11}$, β -AgVO₃, $Ag_4V_2O_6F_2$, and α - Ag_3VO_4 are observed (Figure 2). Unlike the solid-state reaction products, AgV₇O₁₈ and Ag₄V₂O₇ were not observed.¹³ Particularly noteworthy is the presence of a single oxyfluoride $Ag_4V_2O_6F_2$ and the absence of the oxide $Ag_4V_2O_7$ (at 150 °C), both which have the same Ag/V ratio. However, at 200 °C, Ag₄V₂O₇ is observed instead of Ag₄V₂O₆F₂, which will be addressed later. The composition space focused on the HF_(aq)-rich region because experiments with insufficient $HF_{(aq)}$ under any of the aforementioned conditions resulted in incomplete solubilization and only partial reaction of the reactants. In addition, in order to optimize the synthesis (in particular the yield) of $Ag_4V_2O_6F_2$, the composition space diagram was studied in two different ways. First, varying the Ag_2O/V_2O_5 ratio while maintaining

⁽²⁷⁾ Sheldrick, G. M. SHELXTL, version 5.10; Bruker Analytical X-Ray Instruments, Inc.: Madison, WI, 1997.

Figure 2. Composition space for the hydrothermal system of Ag₂O– V_2O_5 –HF_(aq). Formation regions for the silver vanadates and the silver vanadium oxide fluoride are outlined. Line A represents a constant HF_(aq) quantity while varying Ag₂O/V₂O₅ ratio, increasing toward a higher silver fraction. Line B represents a constant 4:1 Ag₂O/V₂O₅ ratio, increasing toward a higher HF_(aq) fraction.

Table 2. Products of the Hydrothermal $Ag_2O-V_2O_5-HF_{(aq)}$ System Are Dependent on the Molar Concentration of $HF_{(aq)}$ at Varying Ag:V Ratios^{*a*}

	x				
Ag/V/HF(aq)	$Ag_2V_4O_{11}$	AgVO ₃	$Ag_4V_2O_6F_2 \\$	Ag ₃ VO ₄	
1:1:x	8	4			
2:1: <i>x</i>		15	7		
4:1: <i>x</i>			15	4	
8:1: <i>x</i>				20	

^{*a*} It should be noted that the values for *x* are not accounting for the moles of water in $HF_{(aq)}$.

a constant overall metal oxide/ $HF_{(aq)}$ ratio (Figure 2, Line A), and second, keeping the Ag_2O/V_2O_5 ratio fixed while varying the amount of $HF_{(aq)}$ in the system (Figure 2, Line B).

Constant $HF_{(aq)}$. In the first trend, reactions with an increasing Ag₂O/V₂O₅ ratio yield products with higher silver contents. However, there is no direct stoichiometric relationship between the Ag_2O/V_2O_5 starting ratio and the silverto-vanadium ratio in the product. For example, 1:1 Ag₂O/ V₂O₅ in a hydrothermal reaction (this work), in a typical solid-state reaction, or in a mechanochemical reaction yields β -AgVO₃.^{13,20,28} However, at 2:1 Ag₂O/V₂O₅ the reported system (with an appropriate quantity of $HF_{(aq)}$, mentioned later) yields β -AgVO₃, whereas in solid state and mechanochemical reactions Ag₄V₂O₇ forms. For hydrothermal reactions, Ag₄V₂O₆F₂ is phase pure at 4:1 Ag₂O/V₂O₅, and similarly α -Ag₃VO₄ is only obtained phase-pure at ratios of 8:1 Ag_2O/V_2O_5 . The silver not incorporated in the final solid product for the reported system remains in solution, rather than forming an amorphous phase, as evidenced by precipitation of AgCl with hydrochloric acid. Other hydrothermal syntheses of silver-containing compounds have also been more successful (higher yield) upon an excess addition of the silver-containing reagent.^{29,30} Indeed, as early as 1930, it was noted that precipitation of Ag₃VO₄ from 3:1 sodium vanadate and AgNO3 occurred more readily with excess AgNO₃.¹¹

⁽²⁸⁾ Kittaka, S.; Nishida, S.; Iwashita, T.; Ohtani, T. J. Solid State Chem. 2002, 164, 144–149.

⁽²⁹⁾ Barthelet, K.; Riou, D.; Ferey, G. Solid State Sci. 2001, 3, 203–209.
(30) Hu, J. Q.; Deng, B.; Zhang, W. X.; Tang, K. B.; Qian, Y. T. Int. J. Inorg. Mater. 2001, 3, 639–642.

 $Ag_2O-V_2O_5-HF_{(aq)}$ System and Crystal Structure of α -Ag₃VO₄

Constant Ag_2O/V_2O_5 . The second trend in the Ag_2O- V₂O₅-HF_(aq) composition space shows that product formation depends on the quantity of HF_(aq) added, while maintaining a constant Ag₂O/V₂O₅ ratio. The mineralizer in the hydrothermal reactions plays an important role in determining the speciation and solubilities of reactants. Reactions are more favorable when the mineralizer initially helps solubilize the reactants, but if the mineralizer prevents any product from forming by either dissolving it or stabilizing the reactant species in solution, no reaction occurs.³¹ In the aforementioned system, the higher mole ratio of $HF_{(aq)}$ solubilizes some of the silver well enough to prevent it from combining with vanadium into a precipitate (Table 2). At a 1:1 $Ag_2O/$ V_2O_5 ratio, β -AgVO₃ was obtained at a low HF_(aq) quantity and $Ag_2V_4O_{11}$ was made by increasing the $HF_{(aq)}$ content. At a 2:1 Ag₂O/V₂O₅ ratio, Ag₄V₂O₆F₂ formed with a low $HF_{(aq)}$ concentration, and increasing the $HF_{(aq)}$ quantity yielded AgVO₃. Finally, at a 4:1 Ag₂O/V₂O₅ ratio, α-Ag₃- VO_4 formed with a low $HF_{(aq)}$ concentration while $Ag_4V_2O_6F_2$ formed at a higher $HF_{(aq)}$ concentration.

The two tendencies above, however, do not address completely the formation of $Ag_4V_2O_7$ in lieu of $Ag_4V_2O_6F_2$

Figure 4. Close-packed layer in α -Ag₃VO₄. Blue = Ag, orange = V.

Figure 5. Primitive cells in α -Ag₃VO₄ have a distorted "anti" sphaleritetype structure of face-centered Ag and V cations with O^{2–} anions in either T₊ or T₋ holes. Blue = Ag, orange = V, red = O.

in the composition space. Originally with the intent of growing larger crystals of Ag₄V₂O₆F₂, hydrothermal reactions were carried out at higher temperatures (200 °C) where larger, red-orange crystals of Ag₄V₂O₇ were recovered. To study the differences between the two systems producing $Ag_4V_2O_6F_2$ and $Ag_4V_2O_7$, a series of reactions was performed using alternate heating temperatures and durations (equal amounts of reactants were loaded into the reaction pouches to form the two different products). Similar heating profiles were used, as described previously, with holding the maximum temperature between 150 and 200 °C at 10 °C increments. Whereas Ag₄V₂O₇ was observed at temperatures as low as 170 °C, it was the dominant phase replacing $Ag_4V_2O_6F_2$ above 190 °C. The silver vanadium oxide phases observed from reactions at 150 °C were also observed from reactions at 200 °C. Because reactions heated to a maximum temperature of 200 °C were cooled slowly, such reactions would be at temperature above 150 °C for 500 min longer than those where the maximum temperature was initially 150 °C. Adjustments to the heating duration such that the total reaction time (heating and cooling) were the same at any given maximum temperature yielded no difference.

In regard to the earlier discussion on small particle sizes of the battery material $Ag_2V_4O_{11}$, the particle sizes the battery materials made in the reported system were considered. Synthesis of $Ag_2V_4O_{11}$ yielded particles that are on the order

⁽³¹⁾ Sheets, W. C.; Mugnier, E.; Barnabe, A.; Marks, T. J.; Poeppelmeier, K. R. *Chem. Mater.* **2006**, *18*, 7–20.

Figure 6. Coordination environment of silver atoms in α -Ag₃VO₄. (a) Pseudo-see-saw with bond angles of O1-Ag1-O1' = 98.13(9)°, O1-Ag1-O2' = 100.73(14)°, O1-Ag1-O2 = 176.47(15)°, O1'-Ag1-O2' = 91.11-(13)°, O1'-Ag1-O2 = 84.40(13)°, and O2'-Ag1-O2 = 81.54(14)° and bond lengths Ag1-O1 = 2.164(4) Å, Ag1-O1' = 2.444(4) Å, Ag1-O2 = 2.505(4) Å, and Ag1-O2' = 2.196(4) Å. (b) Distorted square planer with linear O1-Ag2-O1 and O2-Ag2-O2 bond angles and O1-Ag2-O2 = 02 = 97.57(14)° and bond lengths Ag2-O1/O1' = 2.364(4) Å and Ag2-O2/O2' = 2.374(4) Å.

of 1 μ m in dimensions (Figure 3a).³² In contrast, the particle sizes of as-prepared Ag₄V₂O₆F₂ are more widely dispersed from large crystals to sub-micrometer particles (Figure 3b). Synthesis of more uniformly small sized particles may also improve the performance of batteries incorporating Ag₄V₂O₆F₂ as the active cathode material.

Structure of α -Ag₃VO₄. The structure of α -Ag₃VO₄ consists of a cubic close-packed arrangement of metal ions (silver and vanadium) with the oxide anions occupying half of the tetrahedral positions, roughly creating an "anti" sphalerite-type (ZnS) structure (Figure 4). However, sphalerite-type does not adequately describe the extended structure for a number of reasons. First, the cations occupy the closepacked positions rather than anions (ergo the "anti" modifier). Second, the oxide anions are split between T_+ and T_- holes (Figure 5), which also changes the coordination around the cations, in this case, only around silver, while vanadium is tetrahedrally coordinated to four oxide ligands. The presence of isolated [VO₄]³⁻ tetrahedra had been demonstrated previously by infrared and Raman studies.³³ The [VO₄]³⁻ anion has bond lengths of V-O1 = 1.732(4) Å and V-O2 =1.711(4) Å and bond angles of $O1-V-O1 = 110.5(3)^{\circ}$, $O1-V-O2 = 110.95(18)^{\circ}$ and $108.18(18)^{\circ}$, and O2-V-V $O2 = 108.0(3)^{\circ}$. Silver in α -Ag₃VO₄ has two different coordination spheres (Figure 6). With four oxide ligands, silver is either distorted square planar with D_{2h} symmetry or in a pseudo-see-saw arrangement with C symmetry. The volume around silver beyond the oxygen coordination sphere includes more silver at distances of 2.9619(9) Å, 3.1771(6) Å, and 3.2190(6) Å. Silver-silver distances less than 3.0 Å are common to a few solid-state compounds, including silver pyrovanadate, $Ag_4V_2O_7$, which has minimum silver distances of 2.989 Å.^{16,34} Characteristics such as a sharp absorption

edge in the UV–visible light spectrum and electrical and ionic conductivity are common to materials with d¹⁰ silver cations. Indeed, α -Ag₃VO₄ is bright red and was reported to increase the ionic conductivity of silver at ambient temperature when added to either CuI or AgI.^{35,36}

 K_3VO_4 and $K_3Cr(O_2)_4$ are two compounds with structures similar to that of α -Ag₃VO₄.^{37,38} Both structures are "anti" sphalerite-type with cations in a cubic close-packed arrangement and the oxide or peroxide anions, unlike α -Ag₃VO₄, occupy in only the T₊ holes. The reason why α -Ag₃VO₄ exhibits alternating cells of opposite tetrahedral positions may be because of the interactions between silver ions. Jansen notes that there are frequently drastic differences between structures of ternary silver(I) oxides and their sodium or potassium analogues, where the monovalent cation is present in a high ratio, such as the tendency for the silver cations to aggregate to form two-dimensional ribbons or layers with the silver—silver distances less than 3.30 Å.³⁴

Conclusions

The Ag₂O–V₂O₅–HF_(aq) system produces a variety of silver vanadium oxides and one silver vanadium oxide fluoride under the hydrothermal conditions at 150 °C. Elevating the temperature, Ag₄V₂O₇ is formed instead of Ag₄V₂O₆F₂ at 200 °C. The versatility of this system was shown in producing four stoichiometrically different silver vanadium oxides, as well as forming particles of Ag₂V₄O₁₁ potentially small enough for improving specific applications and excellent crystals of α -Ag₃VO₄ large enough for the single-crystal X-ray diffraction study.

Acknowledgment. The authors gratefully acknowledge the support from the National Science Foundation (Solid-State Chemistry Awards No. DMR-0312136 and DMR-0604454) and the use of the Central Facilities supported by the MRSEC program of the National Science Foundation (DMR-0076097 and DMR-0520513) at the Materials Research Center of Northwestern University.

Supporting Information Available: An X-ray crystallographic file in CIF format including crystallographic details, atomic coordinates, anisotropic thermal parameters, interatomic distances, and angles. This material is available free of charge via the Internet at http://pubs.acs.org.

IC062138+

⁽³²⁾ Bertoni, M. I.; Kidner, N. J.; Mason, T. O.; Albrecht, T. A.; Sorensen, E. M.; Poeppelmeier, K. R. J. Electroceram. 2006, submitted.

⁽³³⁾ Kristallov, L. V.; Volkov, V. L.; Perelyaeva, L. A. Zh. Neorg. Khim. 1990, 35, 1810–1814.

⁽³⁴⁾ Jansen, M. Angew. Chem. 1987, 99, 1136-1149.

⁽³⁵⁾ Viswanathan, A.; Suthanthiraraj, S. A. In Solid State Ionics: New Developments, [Proceedings of the Asian Conference], 5th; Kandy, Sri Lanka, Dec. 2–7, 1996; Chowdari, B. V. R.; Dissanayake, M. A. K. L.; Careem, M. A. Eds.; World Scientific: Singapore, 1996.

⁽³⁶⁾ Mishchenko, A. V.; Krasnova, T. M.; Yaufman, A. P. J. Electroceram. 1979, 3, 92–93.

⁽³⁷⁾ Olazcuaga, R.; Reau, J. M.; LeFlem, G.; Hagenmuller, P. Z. Anorg. Allg. Chem. 1975, 412, 271–280.

⁽³⁸⁾ Stomberg, R. Acta Chem. Scand. 1963, 17, 1563-1566.