NSF-Sponsored Solid State Chem.: Industrial Relevance & Impact

Nate Brese Distinguished Scientist, Mgr. Strategic Planning Rohm and Haas Electronic Materials LLC Freeport, NY

Opinions expressed are my own and not necessarily those of the Rohm and Haas Company.

Rohm and Haas Profile

 > 2005 sales: \$8Bn, ca. 50% N. America
 > 16,500 employees
 > 100 facilities in 27 countries
 > 2005 R&D: \$273MM
 > Imagine the possibilities ™

Technology

Industrial Team

- Bob Bedard (UOP), zeolites, perovskites, dielectrics, sulfides, zirconium silicates
- Nate Brese (Rohm and Haas), electronics, SiC, batteries, nitrides
- Guang Cao (ExxonMobil), zeolites, layered phosphonates
- Sandeep Dhingra (Dow), zeolites, chalcogenides
- Cherie Kagan (IBM), organic electronics, nano CdSe
- > Dave Mitzi (IBM), chalcogenide films, superconductors

Anatomy of a Roadmap

Key attributes
Situation
Critical issues
Needs
Gaps
Recommendations

Look at the past. Extrapolate to the future. Roadmaps are self-fulfilling prophecies.

NSF Mission

To promote the progress of science; to advance the national health, prosperity, and welfare; to secure the national defense; and for other purposes.

> Three strategic goals:

- PEOPLE Developing "a diverse, internationally competitive and globally engaged workforce of scientists, engineers, and well-prepared citizens";
- IDEAS Enabling "discovery across the frontier of science and engineering, connected to learning, innovation and service to society"; and
- TOOLS Providing "broadly accessible, state-of-theart and shared research and education tools."

Industrial Impact and Relevance of NSF-sponsored Solid State Research

People

7

Typical Technical Skills of a Solid-State Chemist

> Synthesis

- Solid-solid, flux, exchange reactions
- Hydro- and solvento- thermal techniques
- Sol-gel chemistry
- Crystal growth
- Safe handling of sensitive materials handling (drybox, Schlenk)

Characterization

- Crystallography (X-ray, neutron, powder)
- Microscopy (Optical, electron, scanning probe)
- Electrical and magnetic
- Thermal (TGA, DSC)
- Optical, IR, UV

Simulation

- Empirical
- Semi-empirical
- First principles

Additional Skills of Solid State Chemists Needed in Industry

> Multidisciplinary approaches

- Chemistry
- Physics
- Materials Science
- Mathematics
- > Broad experience base
 - Multiple focus areas in research groups
 - Variety of projects and project shifts
- > Team skills
 - Collaboration with other disciplines
 - Co-authorship
 - Leading and participating
- > External networks
 - National labs
 - Other universities
 - Industrial collaborators

- Broad experience base
 - Projects shift quickly
 - Must become local expert in minimal time
- Teams
 - Scientists
 - Engineers
 - Marketing, Sales
 - Legal
 - Finance, purchasing, accounting
- Networks
 - Critical to finding information and solving problems
- Management skills
 - Project
 - People

Ideas/ Tools

Industrial Relevance of SSC

ExxonMobil Award Winners

Year	Recipient		University
1979	Horia	Metiu	UCSB
1980	Arthur	Ellis	U. Wisconsin, Madison
1981	Steven	Bernasek	Princeton
1982	Richard	Masel	U. Illinois
1983	Steven	Suib	U. Conn.
1984	Andrew	Bocarsly	Princeton
1985	Jay	Benzinger	Princeton
1986	Thomas.	Mallouk	U. Texas, Austin
1987	Angelica	Stacy	UC, Berkeley
1988	Douglas	Keszler	Oregon State
1989	Richard	Kaner	UCLA
1990	Mercouri	Kanatzidis	Michigan State
1991	A. Paul	Alivisatos	UC, Berkeley
1992	William	Hammack	Carnegie Mellon
1993	Emily	Carter	UCLA
1994	Hanno	Loye	MIT
1995	Gordon	Miller	Iowa State
1996	Peter	Dorhout	Colorado State
1997	Jackie	Ying	MIT
1998	Omar	Yaghi	Arizona State
1999	Slavi	Sevov	Notre Dame
2000	Z. John	Zhang	Georgia Tech.
2001	Peidong	Yang	UC, Berkeley
2003	Shiv	Halasyamani	U. Houston
2004	Julia	Chan	LSU
2005	Ram	Seshadri	UC, Santa Barbara
2006	Teri	Odom	Northwestern

Topics include luminescence, magnetic materials, piezoelectrics, thermoelectrics, porous frameworks, Zintl compounds, theory, structural chemistry and nano.

Industry Reliance on NSF-SSC Increases

Total Industrial Publications from Air Products, Celanese, Dow, DuPont, Exxon, IBM, Kodak, Rohm and Haas, UOP

Industry Reliance on NSF-SSC Increases

Chemical Industry Publications Air Products, Celanese, Dow, DuPont, Rohm and Haas, UOP

Ideas

Publications with "solid state chemistry"

Doubles every 10 years

Industry Reliance on NSF-SSC Increases

Total Industrial Publications from Air Products, Celanese, Dow, DuPont, Exxon, IBM, Kodak, Rohm and Haas, UOP

Chemical Employees Decline

Productivity Increases

Ideas

External Forces on Industry

17

Ideas

Publications with "solid state chemistry"

Doubles every 10 years

Trends in Solid State Chem

Collaborators and Consultants

Centers of excellence
 Technology experts
 Equipment and facilities

Contract research
 Start-ups and spin-outs
 Licensing opportunities

Future

Industrial Trends for SSC

- Better (or equal)
 performance at lower
 cost
- Nanoscale performance
- Functional surfaces (anti-fouling, antimicrobial, stainresistance)

- Novel feedstocks
- Environmentally-benign manufacturing
- > Energy-efficiency
- Positive environmental impact (clean water, toxic mitigation, etc.)
- Want it to work the first time.

Requests

- (Continue to) support cross-disciplinary research and train students to work effectively on crossfunctional teams. Training is clearly the #1 impact.
- (Continue to) support longer-term, fundamental research, with new material discovery in functional areas. This fills an increasing gap in industrial research.
- Encourage work on commercially-relevant problems, while avoiding industry conflicts. Encourage collaboration with industry.