Interwoven Pair of Open Frameworks in the Thiosphosphate $K_6Yb_3(PS_4)_5$

Jennifer A. Aitken and Mercouri G. Kanatzidis*

Department of Chemistry, Michigan State University, East Lansing, Michigan 48824

Received April 30, 2004; E-mail: kanatzid@cem.msu.edu

The reactivity of rare earth elements in molten alkali metal chalcophosphate salts has been the subject of extensive investigations and has afforded a fascinating variety of complex materials.1 There is a growing interest in these materials not only for their intriguing structural chemistry but also for their attractive physical properties.2 Investigations in the A–RE–P–Q systems (where A = an alkali metal, RE = rare earth element, and Q = S, Se) have begun relatively recently,3–10 while we focused our attention on the K–Yb–P–S system. We were curious to see if Yb would be found in the 2^+ oxidation state and form compounds with structures similar to the Eu$^{2+}$-containing chalcophosphates3,5,8 or if Yb would mimic the chemistry of the Ln$^{3+}$-containing chalcophosphates.4,6–10 In this context, the compound NaYbP$_2$S$_6$10 is a known example with a structure resembling that of the KREP$_3$Se$_6$ phases.6 In addition, Yb can give rise to mixed valency that can lead to unusual physical properties.11 Here we describe $K_6Yb_3(PS_4)_5$ which presents an exceptional case of two identical interwoven networks that have unique framework topology. In this compound, Yb$^{3+}$ centers exhibit a dual coordination property that plays a key role in the stabilization of the frameworks.

A few early transition metal-containing chalcophosphates feature networks with interpenetrating lattices;12 however, such structures are not known for lanthanide metals. This kind of structural theme has been observed only recently for the actinide-containing thiosphosphate U(PS)$_4$.13 The phenomenon of interpenetration is of considerable interest in the field of porous materials.14 Particularly interesting is the issue of how and what kind of structures assume interpenetrated motifs and whether it is possible to control the phenomenon.

$K_6Yb_3(PS_4)_5$ was prepared as orange polyhedra in a potassium thiosphosphate flux.15 The compound possesses an intricate, three-dimensional interlocked structure consisting of two identical, three-dimensional sublattices, which are related by an inversion center (see Figure 1a). Each $\infty^3[Yb_3(PS_4)_5]^{8-}$ sublattice has a microporous structure and contains PS$_4$ tetrahedra and Yb atoms that adopt two different coordination geometries (see Figure 1b). There are three crystallographically unique Yb atoms, two with distorted octahedral coordination and one with a bicapped trigonal prismatic geometry (8 coordination). If the PS$_4$ tetrahedra are represented by sticks and the Yb atoms as balls, we can construct a simplified skeletal view of the sublattice (see Figure 2). In this perspective, each octahedral Yb has three nearest neighbors (trigonal planar), and the 8-coordinate Yb have four neighbors (tetrahedral). To the best of our knowledge, this architecture, composed of trigonal planar and tetrahedral centers, is unique for an open framework.

The octahedral Yb(2) and Yb(3) atoms connect to three PS$_4$ tetrahedra and have Yb–S distances ranging from 2.656(4) to 2.714(4) Å, while the bicapped trigonal prismatic Yb(1) atom connects to four PS$_4$ tetrahedra with Yb(1)–S distances ranging from 2.773(4) to 2.896(3) Å. The fact that Yb$^{3+}$ adopts two different coordination geometries within the same structure is rare and noteworthy. The octahedral geometry for Yb(2) and Yb(3) is the first example of octahedral lanthanide coordination in any chalcophosphate materials to date. In general, the lanthanides in these materials are found in trigonal prismatic (often capped) geometry. The octahedral geometry of Yb(2) in this compound is probably
due to the smaller atomic radius of Yb compared to the lanthanide metals that have been studied thus far in this chemistry. The bicapped trigonal prismatic Yb(1) center is responsible for the three-dimensional nature of each framework. All [PS₄]³⁻ anions adopt the same binding mode by chelating two Yb⁺⁺⁺ cations by using opposite edges. All K⁺ cations have irregular geometries with coordination numbers ranging from six to eight.

K$_6$Yb$_3$(PS$_4$)$_5$ exhibits a sharp, well-defined energy gap, E_g, of ~2.6 eV, consistent with its yellowish-orange color. The electronic absorption responsible for the gap is likely an excitation from sulfur-based p-orbitals to vacant Yb d-orbitals. The Raman spectra, obtained on single crystals of K$_6$Yb$_3$(PS$_4$)$_5$, show a very strong peak at 424 cm$^{-1}$, which is assigned to the $v_1(^1A_g)$ stretching mode of the [PS$_4$]$_5^-$ stretch exists at similar frequencies for other compounds containing [PS$_4$]$_5^-$.

Magnetic measurements performed on polycrystalline samples of K$_6$Yb$_3$(PS$_4$)$_5$ clearly show Curie Weiss behavior from 50 to 300 K with a Weiss constant $\theta = -38.5$ K and a Curie constant $C = 2.77$. From the Curie constant, we obtain a $\mu_\text{eff} = 4.71$ μ_B, consistent with the theoretical value calculated for the Yb$^{3+}$ free ion. There was no difference between the field-cooled and zero-field-cooled data. The small negative Weiss constant indicates a possible weak antiferromagnetic exchange interaction. The absence of magnetic ordering is consistent with the fact that the shortest Yb--Yb distance in the structure is over 6 Å, and therefore the Yb$^{3+}$ cations act as isolated magnetic ions. Field dependence data showed no evidence of saturation up to 5.4 K Gauss.

Of all lanthanides, ytterbium seems to be special if not unique in its chemistry and reactivity. The surprising architecture of the frameworks in K$_6$Yb$_3$(PS$_4$)$_5$ and their interwoven nature are possible because of the distinctive combination of Yb$^{3+}$ ions in both octahedral and bicapped trigonal prismatic coordination. All other lanthanides are larger and less likely to accommodate an octahedral environment. In addition, the three-dimensional framework motif is different from all other types reported for a framework structure. This architecture provides a new design to be targeted for synthesis of so-called isoreticular materials by those involved in the construction of metal organic frameworks and coordination solids.

This could be accomplished with judiciously chosen secondary building units (SBUs).

Acknowledgment. We acknowledge financial support from the National Science Foundation (Grant DMR-0127644) and the use of the W. M. Keck Microfabrication Facility at Michigan State University, a NSF MRSEC facility. We are indebted to Professor J. L. Dye for the use of the fiber optic UV–vis spectrometer, Dr. Bradley Sieve and James Salvador for assistance with magnetic measurements, and Dr. Charles Campana for his assistance with twinning software.

Supporting Information Available: Details of structural analysis in CIF format. This material is available free of charge via the Internet at http://pubs.acs.org.

References

