The Synthesis and Crystal Structure of NpSe₃

Brian J. Bellott,[a] Richard G. Haire,[b] and James A. Ibers*[a]

Keywords: Neptunium triselenide; Synthesis; Single crystal structure analysis; X-ray diffraction

Abstract. Neptunium triselenide, NpSe₃, was synthesized in high yield by the reaction of the elements in a Sb₂Se₃ flux at 1223 K. Its structure has been determined by single-crystal X-ray diffraction methods. The compound crystallizes with two formula units in space group C₂h₁/m of the monoclinic system in the TiSe₃ structure type with cell constants at 100 K of a = 5.592(3) Å, b = 4.002(2) Å, c = 9.422(5) Å, β = 97.40(1)°. The asymmetric unit comprises one neptunium and three selenium atoms, each with site symmetry m. Np–Se interatomic distances range from 2.859(2) to 2.927(3) Å; the Se–Se bond length of 2.340(3) Å is typical of a single bond. The compound may thus be charge-balanced and formulated as Np⁴⁺Se²⁻Se²⁻.

Introduction

The extensive chemistry of actinide compounds arises from their 5f orbitals; these show varying degrees of localization from bonding to itinerancy. In the assessment of their degree of localization neptunium is particularly important as it is at the border between tetravalent thorium and uranium and trivalent lanthanide-like plutonium.[1] To take the rich chemistry of the actinide chalcogenides. Potential for the syntheses of single crystals of lanthanide and actinide chalcogenides.

Np was +3.[8] The more definitive ²³⁷Np Mössbauer measurements were first interpreted as favoring the +3 oxidation state,[9] but were later reinterpreted to favor the +4 oxidation state.[3] From this brief summary it is clear that these heroic measurements on NpSe₃, which is difficult to prepare and dangerous to handle, led to conflicting results regarding its structure and the formal oxidation state of Np. The single-crystal X-ray study in 1984[10] established the structure of USe₃ and the U⁴⁺ oxidation state and this present single-crystal study establishes the structure of NpSe₃ and the Np⁴⁺ oxidation state.

Results and Discussion

Table 1. summarizes the early literature on the structure of NpSe₃. All the powder diffraction studies found the space group to be P2₁/m but the earliest found a cell that was doubled along the c axis. At that time a doubled cell was also assigned to USe₃ and the assumption was that NpSe₃ and USe₃ were isostructural with the trichalcogenides of Ti, Zr, and Hf,[7] even though the unit cells of the latter were not doubled along c. Nevertheless, Damien et al.[5] indicated that Np was probably +4. Three years later Blaise et al. carried out magnetic measurements on USe₃ and NpSe₃ and concluded that Np was +3.[8] The more definitive ²³⁷Np Mössbauer measurements were first interpreted as favoring the +3 oxidation state,[9] but were later reinterpreted to favor the +4 oxidation state.[3]

Black crystals of NpSe₃ were synthesized in high yield from the combination of the elements in a Sb₂Se₃ flux. A Sb₂Se₃ flux has been successfully employed to synthesize a number of lanthanide selenides as single crystals, including Ln₃LuSe₆ (Ln = La, Ce).[11] Clearly, Sb₂Se₃ as a flux has shown great potential for the syntheses of single crystals of lanthanide and actinide chalcogenides.

Neptunium triselenide, NpSe₃, crystallizes with two formula units in space group P2₁/m of the monoclinic system in the TiSe₃ structure type.[7] As shown in Figure 1 and Table 2, NpSe₃ contains one crystallographically unique Np position and three crystallographically unique Se positions. Each has site symmetry m. Each Np atom is coordinated by four Se atoms and two Se–Se pairs. Given the distances shown, NpSe₃ may be written as Np⁴⁺Se²⁻Se²⁻, as the Se–Se distance of 2.340(3) Å is a typical Se–Se single bond and the Np–Se distances of 2.859(2) to 2.927(3) Å are consistent with those in other Np₅Se₅ compounds, including the eight-coordinate Np⁴⁺ center in Np₅Se₅ (2.7738(5) to 2.9770(7) Å).[12] The Se atoms are shared among other Np centers to comprise the crystal structure (Figure 2). Given the nature of the structure (Figure 1)
Table 1. Summary of crystallographic unit cell determinations of NpSe$_3$ and USe$_3$.

<table>
<thead>
<tr>
<th>Element</th>
<th>Unit Cell Parameters/Å</th>
<th>Reference</th>
<th>Year</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>NpSe$_3$</td>
<td>a = 5.64(2), b = 4.01(1), c = 19.06(7), β = 79.6(3)</td>
<td>[5]</td>
<td>1973</td>
<td>Similar to early USe$_3$ cell (below)</td>
</tr>
<tr>
<td></td>
<td>a = 5.63, b = 4.03, c = 9.43, β = 96.9</td>
<td>[12]</td>
<td>1980</td>
<td>Neutron powder 77K</td>
</tr>
<tr>
<td></td>
<td>a = 5.63, b = 4.03, c = 9.57, β = 80.5</td>
<td>[9]</td>
<td>1982</td>
<td>X-ray powder</td>
</tr>
<tr>
<td></td>
<td>a = 5.592(3), b = 4.002(2), c = 9.422(5), β = 97.40(1)</td>
<td>This work</td>
<td>2012</td>
<td>Single crystal 100 K</td>
</tr>
<tr>
<td></td>
<td>a = 5.65, b = 4.06, c = 9.55, β = 97.3</td>
<td>[14]</td>
<td>1968</td>
<td>X-ray powder</td>
</tr>
<tr>
<td></td>
<td>a = 5.652(2), b = 4.056(3), c = 10.469(9), β = 115.03(6)</td>
<td>[10]</td>
<td>1984</td>
<td>Single crystal</td>
</tr>
</tbody>
</table>

There is no question that the formal oxidation state of Np in NpSe$_3$ is +4.

Figure 1. The coordination about Np in NpSe$_3$. The displacement ellipsoids are drawn at the 95% probability level.

Table 2. Crystal data and structure refinement for NpSe$_3$.

Temperature /K	100(2)
Formula Mass /g·mol$^{-1}$	947.76
Space Group, Z	P_{21}/m, 2
Lattice constants /Å	a = 5.592(3), b = 4.002(2), c = 9.422(5), β = 97.40(1)$^\circ$
Volume /Å3	209.1(2)
Density, calculated /g·cm$^{-3}$	7.527
Crystal size /mm	0.216 × 0.071 × 0.037
Diffractometer	Bruker APEX II
X-ray radiation, λ /Å	Mo-K$_\alpha$, 0.71073
Monochromator	graphite
Absorption coefficient μ /mm$^{-1}$	50.726
θ range $^\circ$	4.36–26.44
Index range	–6 ≤ h ≤ 7, –5 ≤ k ≤ 4, –11 ≤ l ≤ 11
Independent Reflections	485
Transmission t_{min}, t_{max}	0.0464, 0.2910
No. of parameters	25
$R_{1}(F^2 > 2σ(F^2))$, wR(F^2)	0.0370, 0.0961
$Δρ_{max}$, $Δρ_{min}$/e Å$^{-3}$	–1.98, 5.34

Table 3 provides a comparison of interatomic distances in NpSe$_3$ with those in USe$_3$. As expected from the actinide contraction of the early actinides, the Np–Se distances are shorter than the U–Se distances by 0.020 to 0.055 Å.

Table 3. Comparison of distances /Å in NpSe$_3$ and USe$_3^a$.

<table>
<thead>
<tr>
<th></th>
<th>NpSe$_3$</th>
<th>USe$_3^a$</th>
</tr>
</thead>
<tbody>
<tr>
<td>An–Se(1) 2</td>
<td>2.859(2)</td>
<td>2.914(1)</td>
</tr>
<tr>
<td>An–Se(2) 2</td>
<td>2.866(2)</td>
<td>2.905(1)</td>
</tr>
<tr>
<td>An–Se(3) 2</td>
<td>2.876(2)</td>
<td>2.896(1)</td>
</tr>
<tr>
<td>An–Se(4) 2</td>
<td>2.920(3)</td>
<td>2.952(1)</td>
</tr>
<tr>
<td>An–Se(5) 2</td>
<td>2.927(3)</td>
<td>2.967(1)</td>
</tr>
<tr>
<td>Se(1)–Se(3)</td>
<td>2.340(3)</td>
<td>2.361(1)</td>
</tr>
</tbody>
</table>

Table 3 provides a comparison of interatomic distances in NpSe$_3$ with those in USe$_3$. As expected from the actinide contraction of the early actinides, the Np–Se distances are shorter than the U–Se distances by 0.020 to 0.055 Å.

Conclusions

NpSe$_3$ may be prepared in high yield by the reaction of the elements in a Sb$_2$Se$_3$ flux at 1223 K. The compound crystallizes in space group P_{21}/m of the monoclinic system in the TiS$_3$ structure type. NpSe$_3$ is isostructural with USe$_3$. The structure comprises a Np center coordinated by four Se atoms and two Se–Se pairs. The Se–Se distance is 2.340(3) Å, a typical single-bond length. NpSe$_3$ may be formulated as Np$^{4+}$Se$_2^–$Se$_2^{2–}$, the formal oxidation state of Np being +4.
Table 4. Fractional atomic coordinates and anisotropic displacements parameters for NpSe₃.

<table>
<thead>
<tr>
<th>Atom</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U₁₁</th>
<th>U₂₂</th>
<th>U₃₃</th>
<th>U₁₂</th>
<th>U₁₃</th>
<th>U₂₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>Np1</td>
<td>0.2832(14)</td>
<td>0.2500</td>
<td>0.15547(9)</td>
<td>0.0075(4)</td>
<td>0.0042(4)</td>
<td>0.0222(5)</td>
<td>0.0000</td>
<td>0.0011(3)</td>
<td>0.0000</td>
</tr>
<tr>
<td>Se1</td>
<td>0.4621(4)</td>
<td>0.2500</td>
<td>0.6685(2)</td>
<td>0.0097(11)</td>
<td>0.0100(10)</td>
<td>0.0241(12)</td>
<td>0.0000</td>
<td>0.0011(8)</td>
<td>0.0000</td>
</tr>
<tr>
<td>Se2</td>
<td>0.764(4)</td>
<td>0.2500</td>
<td>0.0642(2)</td>
<td>0.0088(10)</td>
<td>0.0092(10)</td>
<td>0.0233(12)</td>
<td>0.0000</td>
<td>0.0023(8)</td>
<td>0.0000</td>
</tr>
<tr>
<td>Se3</td>
<td>0.8783(4)</td>
<td>0.2500</td>
<td>0.6594(2)</td>
<td>0.0099(11)</td>
<td>0.0104(10)</td>
<td>0.0242(12)</td>
<td>0.0000</td>
<td>0.0045(8)</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

a) All atoms are in Wyckoff site 2e and have m symmetry.

Experimental Section

Caution! ²³⁷Np is a α- and β-emitting radioisotope and as such is considered a health risk. Its use requires appropriate infrastructure and personnel trained in the handling of radioactive materials. The procedures we use for the synthesis of Np compounds have been described.¹⁵ Sb (Aldrich, 99.5%) and Se (Cerac, 99.999%) were used as received. Sb₂Se₃ was prepared by the stoichiometric reaction of the elements at 1273 K for 24 h. Brittle²³⁷Np chunks were crushed and used as provided (ORNL).

Np (17.2 mg, 0.073 mmol), Se (20 mg, 0.253 mmol), and Sb₂Se₃ (100 mg, 0.208 mmol) were loaded into a fused-silica ampule in an Ar-filled glove box and then flame-sealed under vacuum. The reaction mixture was placed in a computer-controlled furnace and heated to 1173 K in 24 h, then to 1223 K in 24 h, kept at 1223 K for 48 h, cooled to 1173 K in 24 h, then cooled to 673 K in 150 h, and finally cooled to 298 K in 24 h. The reaction products included black columnar crystals of Sb₂Se₃ and black columnar single crystals of NpSe₃. A 0.037 × 0.071 × 0.216 mm black column was selected for use in single-crystal X-ray diffraction experiments.

Single crystal X-ray diffraction data for NpSe₃ at 100 K were collected with the use of graphite-monochromatized Mo-Kα radiation (λ = 0.71073 Å) on a Bruker APEX² diffractometer. The crystal to detector distance was 5.106 cm and data were collected by a scan of 0.3° in 0 in groups of 606 frames at φ settings of 0, 90, 180, and 270°. The exposure time was 30 s per frame. The collection of intensity data as well as cell refinement and data reduction were carried out with the use of the program APEX². Absorption corrections and incident beam corrections were performed with the use of the program SADABS. The structure was solved with the direct-methods program SHELXS and refined with the least-squares program SHELXL. The structure was solved with the direct-methods program SHELXS and refined with the least-squares program SHELXL.

<table>
<thead>
<tr>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>21. The crystallographic file in CIF format for Np₂Se₅ has been deposited with FIZ Karlsruhe as CSD number 424526. It may be obtained free of charge by contacting FIZ Karlsruhe at +49-724-7808-666 (Fax) or cryodata@fiz-karlsruhe.de.</td>
</tr>
</tbody>
</table>

Received: May 09, 2012
Published Online: August 14, 2012

Acknowledgments

This research was supported at Northwestern University by the U.S. Department of Energy, Basic Energy Sciences, Chemical Sciences, Biosciences, and Geosciences Division and Division of Materials Sciences and Engineering Grant ER-15522. We thank Dr. Lynda Soderholm, Director of the Actinide Facility, Argonne National Laboratory, for providing laboratory facilities for this Np study. We particularly thank Dr. G. B. Jin for his assistance.