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Uniform zirconium-based porphyrin metal–organic framework (MOF-525) thin films are grown on conducting
glass substrates by using a solvothermal approach. The obtained MOF-525 thin film is electrochemically
addressable in aqueous solution and shows electrocatalytic activity for nitrite oxidation. The mechanism for
the electrocatalytic oxidation of nitrite at the MOF-525 thin film is investigated by cyclic voltammetry. The
redox mechanism of the MOF-525 thin film in the KCl aqueous solution is studied by amperometry. The MOF-
525 thin film is deployed as an amperometric nitrite sensor. The linear range, sensitivity, and limit of detection
are 20–800 μM, 95 μA/mM-cm2, and 2.1 μM, respectively.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Nitrite has been widely used as a preserving agent and appearance
builder in the food industry. However, excess uptake of nitrite is
harmful to human health [1,2]. Furthermore, it is well known that the
appearance of nitrite in human urine is often correlated with urinary
tract infections [3]. Thus, accurate detection of nitrite becomes an
important issue in both the food and health industries.

Several analytical techniques have been developed for detecting
nitrite [4–7]. Compared to other approaches, electrochemical detection
shows the advantages of simple experimental procedures, short
response time, and feasibility for building portable sensors [8]. There-
fore, various materials have been utilized as electrocatalytic materials
for detecting nitrite electrochemically [9–14]. In addition to thesemate-
rials, porphyrins and metalloporphyrins have been reported as
electrocatalysts for the oxidation of nitrite [15–17]. To further improve
the sensitivity of the electrochemical sensor, more electrocatalytic
sites are required on the modified electrode.

Metal–organic frameworks (MOFs) are a series of porous materials
which are constructed with metal-based nodes and organic linkers
Engineering, National Taiwan
; fax: +886 2 2362 3040.
[18,19]. Due to their regular porosity and tunable pore compositions,
MOFs have been examined for various applications [20–27]. The highest
Brunauer–Emmett–Teller (BET) surface area ofMOFs reported in the lit-
erature exceeds 7000 m2/g, which is much higher than the values of
other porousmaterials [28]. Due to such high surface area, a few studies
have utilizedMOFs for electrochemical sensors [29–32]. Among various
MOFs, porphyrin MOFs, which are constructed from porphyrinic or
metalloporphyrinic linkers, have been widely reported [33–35].
The thin films of porphyrin MOFs grown on substrates have also
been reported [36–39], however, only a few studies report their
electrochemistry and electrochemical applications [38]. Given the high
surface areas of MOFs, we reasoned that a water-stable porphyrin
MOF thin film grown on a conducting substrate should be an attractive
candidate for electrochemical nitrite sensor. To date there is not
any study utilizing porphyrin MOFs for electrochemical detection of
nitrite.

Recently, we prepared uniformly grown porphyrin MOF thin films
on conducting glass substrates solvothermally; the MOF is constructed
from free-base meso-tetra(4-carboxyphenyl)porphine (H4TCPP)
linkers and hexa-zirconium nodes (MOF-525; Fig. 1(a)) [40]. The
MOF-525 sample possessed a BET surface area of 2415 m2/g, with a
unique pore size of 1.8 nm. Moreover, the MOF-525 thin film was
found to be electrochemically addressable and stable in aqueous solu-
tion [40]. However, applications of the MOF-525 thin film have not
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Fig. 1. (a) Crystal structure of MOF-525. For simplicity hydrogen atoms are omitted. (b) XRD patterns of the MOF-525 thin film and simulated MOF-525 [35]. (c)–(e) SEM images of the
MOF-525 thin film at various magnifications.
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been explored. Due to the ultrahigh stability of zirconium-based
MOFs in water [41], the electroactive MOF-525 thin film seems to be
appropriate for electrochemical sensing applications in aqueous
systems.
2. Material and methods

Potassium chloride (Sigma-Aldrich, 99.0–100.5%), and sodium
nitrite (NaNO2, Sigma-Aldrich, ≥99.0%) were used as received. Deion-
ized water was used throughout the work. The experimental procedure
for the growth of MOF-525 thin film has been reported in details in our
previous study [40]; uniform MOF-525 thin films with dark red color
can be grown on fluorine-doped tin oxide (FTO) substrates with
excellent reproducibility. The hydroxyl groups covering on the FTO
substrate are necessary for the growth of MOF thin film with strong
chemical bonding to the substrate [26,27,38,40].

X-ray diffraction (XRD) patterns were measured by an X-ray
diffractometer (X-Pert, the Netherlands). The morphologies of MOF-
525 thin films were investigated by a scanning electron micro-
scope (SEM, Nova NanoSEM 230). All the electrochemical measure-
ments were conducted on a CHI 440 electrochemical workstation
(CH Instruments, Inc., USA), using a three-electrode setup. The MOF-
525 thin film or bare FTO glass (0.25 cm2) was served as the
working electrode. A Pt foil (4 cm2) and a Ag/AgCl/KCl (sat'd) electrode
(homemade) were served as the counter and reference electrodes,
respectively. 10 mL of 0.1 M KCl aqueous solution was used as the
electrolyte.
3. Results and discussion

3.1. Characterizations

Fig. 1(b) shows the XRD pattern of the obtained MOF-525 thin film
and the simulated XRD pattern of MOF-525 reported by Morris et al.
[35]. All the diffraction peaks observed in the experiment agree with
the simulated pattern. Fig. 1(c) to (e) show the SEM images of the
MOF-525 thin film at various magnifications. It can be observed that
the thin film is composed of several cubic crystals of MOF-525 grown
on the FTO surface, and it shows a uniform morphology over a large-
area region (Fig. 1(e)).
3.2. Redox mechanism and electrocatalysis

Fig. 2(a) shows the cyclic voltammetric (CV) curves of theMOF-525
thin film and bare FTO substrate measured in 0.1M KCl solutions before
and after adding 0.5 mM of NaNO2. For the bare FTO substrate, the
current signal for the oxidation of nitrite is negligible. A broad redox
hump can be observed in the CV curve of the MOF-525 thin film; this
redox signal may be attributed to the oxidation of free-base TCPP
linkers, which generates the cation radical state of the porphyrin
(TCPP+) [40,42]. Moreover, a remarkable current signal for the irrevers-
ible oxidation of nitrite (NO2

−) can be observed in the CV curves ofMOF-
525 thin films. It should be noted that after immersing in 0.1 M NaNO2

aqueous solution for 10 min and washing by DIW, the pretreated MOF-
525 thin film shows a similar redox behavior, suggesting that the



0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

-0.01

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

Bare FTO (without NO
2

-

)

 Bare FTO (0.5 mM NO
2

-

)

MOF-525 thin film (without NO
2

-

)

 MOF-525 thin film (0.5 mM NO
2

-

)

Nitrite-pretreated MOF-525 thin film

(without NO
2

-

)

Tested in 0.1 M KCl (aq)

Scan rate: 10 mV/s

C
u
r
r
e
n
t
 
d
e
n
s
i
t
y
 
(
m
A
/
c
m

2

)

E (V) vs. Ag/AgCl/KCl (sat'd)

(a)

0.5 0.6 0.7 0.8 0.9

-0.01

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

Without NO
2

-

0.1 mM NO
2

-

0.2 mM NO
2

-

0.3 mM NO
2

-

0.4 mM NO
2

-

0.5 mM NO
2

-

Tested in 0.1 M KCl (aq)

Scan rate: 10 mV/s

C
u
r
r
e
n
t
 
d
e
n
s
i
t
y
 
(
m
A
/
c
m

2

)

E (V) vs. Ag/AgCl/KCl (sat'd)

Increasing NO
2

-

concentration

MOF-525 thin film(b)

0.5 0.6 0.7 0.8 0.9

-0.0001

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

Without NO
2

-

0.1 mM NO
2

-

0.2 mM NO
2

-

0.3 mM NO
2

-

0.4 mM NO
2

-

0.5 mM NO
2

-

Tested in 0.1 M KCl (aq)

Scan rate: 10 mV/s

C
u
r
r
e
n
t
 
d
e
n
s
i
t
y
 
(
m
A
/
c
m

2

)

E (V) vs. Ag/AgCl/KCl (sat'd)

Increasing NO
2

-

concentration

Bare FTO substrate(c)

Fig. 2. (a) CV curves of theMOF-525 thin film and bare FTO substratemeasured before and
after adding 0.5 mM nitrite. CV curve of the pretreated MOF-525 thin film is also shown.
(b) CV curves of the MOF-525 thin film and (c) bare FTO substrate, measured in various
concentrations of nitrite.
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chemisorption of nitrite inside the film is negligible. As reported
previously, the oxidation process of nitrite happening on a platinum
electrode involves the electrochemical oxidation of NO2

− to NO2 and
the rapid disproportionation of NO2 into NO2

− and nitrate (NO3
−) [43].

The chemical reaction between nitrite and protons does not contribute
to any observable current since the electrochemistry was investigated
in 0.1 M KCl solution, which shows a pH value much higher than the
pKa of HNO2 [44,45]. Accordingly, the whole electrocatalytic process
happening at the MOF-525 thin film is proposed as follow:

2TCPP↔2TCPPþ þ 2e− ð1Þ

2TCPPþ þ 2NO−
2 →2NO2 þ 2TCPP ð2Þ

2NO2 þ H2O→NO−
3 þ NO−

2 þ 2Hþ ð3Þ

Fig. 2(b) shows CV curves of the MOF-525 thin film measured in
0.1 M KCl solutions containing various concentrations of nitrite. A
broad anodic peak can be observed at around 0.85 V in all the CV curves
after the addition of nitrite, and the peak current increases linearly with
the increasing concentration of nitrite. The current increment of the
MOF-525 thin film after adding nitrite is more than two orders of
magnitude higher than that of the bare FTO substrate (Fig. 2(c)),
which indicates the merit of using MOF-525 thin film as compared to
the bare substrate.

Fig. 3(a) shows the CV curves of the MOF-525 thin filmmeasured in
0.1MKCl solution containing 1.0mMof nitrite at various scan rates (ν).
The values of anodic peak current density (Jpa) obtained from these CV
curves are plotted versus ν and ν0.5, respectively (Fig. 3(b) and (c)). It
can be observed that the value of Jpa exhibits excellent linearity with
ν0.5 (R2 = 0.998), which is much better than that with ν (R2 =
0.968). This result indicates that the whole electrocatalytic process is
diffusion-controlled [46]. In addition, a plot of Jpa/ν0.5 versus ν is
shown in Fig. 3(d). The curve in Fig. 3(d) exhibits a shape typical of
that for an ECcat process [47,48]; this result further supports themech-
anism proposed in Eqs. (1)–(3).

To further investigate the redox mechanism of the MOF-525 thin
film, amperometric method was utilized [49]. The MOF-525 thin film
was first held at 0 V and immediately switched to 0.9 V at 0 s, and the
plots of current density (J) versus t−0.5 are shown in Fig. 3(e). From
the slope of the plot, the diffusion coefficient (D) of the current-
producing charges through the MOF-525 thin film can be estimated
by using Cottrell equation [46,49–51]:

J ¼ nFD0:5C
π0:5 t−0:5 ð4Þ

where C is the concentration of redox active centers (i.e., TCPP linkers)
within the MOF-525 thin film, while n and F maintain their standard
meanings. From the crystal structure of MOF-525, the value of C was
estimated to be 681 mol/m3. Thus, the value of D for oxidation-driven
charge transport within theMOF-525 thin film in the 0.1M KCl solution
without nitrite was estimated to be 2.14 × 10−16 m2/s. Since the
physical movement of TCPP linkers in MOF-525 is negligible, the
redox process of the MOF-525 thin film should be limited by either
the charge hopping between the linkers or the diffusion of K+ and/or
Cl− in the thin film [50,51].

The amperometric experiments were also performed in the pres-
ence of nitrite. As shown in Fig. 3(e), the slope increases with increasing
nitrite concentration. The increases are expected for ECcat processes, as
the observed current transients now contain contributions from simple
charge-hopping as well as catalytic regeneration of the oxidizable form
of the MOF linker. Given their dual origin, we will term the parameters
derived from early-time Cottrell plots, apparent diffusion coefficients
(Dapp). The values of Dapp were estimated to be 9.10 × 10−16,
3.32 × 10−15, and 6.30 × 10−15 m2/s in the solutions containing 0.2,
0.4, and 0.6 mM of nitrite, respectively. In the presence of nitrite, nitrite
ions coming from the bulk electrolyte can diffuse through the porous
MOF thin film and get oxidized inside the film, which reduces the
TCPP+ back to TCPP (also see Eq. (2)). Under this situation, the charge



Fig. 3. (a) CV curves of theMOF-525 thinfilmmeasured in the solution containing 1.0mM
nitrite at various ν. Plots of (b) Jpa vs. ν, (c) Jpa vs. ν0.5, and (d) Jpa/ν0.5 vs. ν obtained from
(a). (e) Plots of J vs. t−0.5 obtained from the amperometric curves of theMOF-525 thinfilm
measured at 0.9 V.
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hopping between TCPP linkers need only take place in a part of theMOF
thin film close to the underlying electrode. Thus, the values of Dapp

would increase after adding a small concentration of nitrite, since the
diffusion rate of nitrite through the MOF-525 thin film is somewhat
higher than the rate of linker-to-linker charge hopping in the thin film.
Fig. 4. (a) Amperometric curves of the MOF-525 thin film measured in the stationary so-
lutions containing various concentrations of nitrite. (b) Plot of current density vs. concen-
tration of nitrite.
3.3. Amperometric detection of nitrite

An amperometric technique was used to quantify the concentration
of nitrite by using the MOF-525 thin film. The amperometric curves of
the MOF-525 thin film measured at 0.9 V in stationary 0.1 M KCl
solutions containing various concentrations of nitrite are shown in
Fig. 4(a), and the plot of current density recorded at 60 s versus the con-
centration of nitrite is shown in Fig. 4(b). Error bars were constructed
from three separated experiments. From Fig. 4(b), it can be observed
that the current density increases linearly with the increasing concen-
tration of nitrite from 20 to 800 μM (R2 = 0.998). From the slope of
the calibration curve within this linear region, the sensitivity of the
nitrite sensor can be estimated to be 95 μA/mM-cm2. The limit of detec-
tion (LOD) of the proposed sensor is calculated to be 2.1 μM, based on
the value of the sensitivity and a signal-to-noise ratio of 3. Compared
to the sensitivities of electrochemical nitrite sensors reported recently
[13,52–60], the sensitivity of theMOF-525 nitrite sensor is not superior,
but it is still higher than some of them [52,53,56,59]. Moreover, the
MOF-525 nitrite sensor exhibits a wider linear range compared to
most of the sensors mentioned above [13,52,54,55,57,60]. The LOD re-
ported here is smaller than that reported in one of the above studies
[52]. Ongoing work is focusing on developing porphyrin MOF-based
materials possessing faster charge-transport rates in order to improve
the sensitivity and LOD.

4. Conclusions

Thin films of a MOF constructed from free-base porphyrin linkers
and hexa-zirconium nodes (MOF-525) were grown on conducting
glass substrates by using a solvothermal approach. The obtained MOF-
525 thin film is electroactive in 0.1 M KCl aqueous solution, and it
exhibits electrocatalytic activity for the oxidation of nitrite. The electro-
catalytic process was found to be diffusion-controlled, and it was
confirmed to be an ECcat process. The amperometric nitrite sensor
using MOF-525 thin film was successfully developed.
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