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Standard rate constants (k,) for interfacial electron transfer (ET) have been obtained for several redox couples 
featuring very small internal activation barriers. To render these ordinarily fast rates more easily measurable, 
we have employed low-defect-density, highly ordered pyrolytic graphite (HOPG) as an electrode material 
(see: Allred and McCreery, Anal. Chem. 1992,64,444). At the HOPG/aqueous solution interface, we observe 
the systematic (exponential) increase of k, with inverse reactant size predicted by Marcus for electrochemical 
reactions whose barriers are primarily defined by solvent reorganizational effects. We also observe that rates 
can be significantly accelerated by delocalizing electrons over multiple metal-centered trapping sites. The 
degree of rate acceleration is quantitatively consistent with the extent of solvent barrier lowering expected if 
electronic delocalization effectively increases the radius of the ET reaction site. 

Activation barriers, and therefore rates, for electron transfer 
(ET) at electrochemical interfaces are believed to depend 
strongly on solvent repolarization and reorganizational energet- 
ics.* Furthermore, available continuum theory2 suggests that 
interfacial solvent barriers (AG,*) should vary in a compara- 
tively simple and predictable way with parameters such as 
molecular reactant/electrode separation distance (4, reactant 
radius (r) ,  optical and static solvent dielectric constants (Dop 
and D,), and amount of charge (e) actually transferred: 

AG,* = (e2 /8) ( l / r  - l /d ) ( l /Dop - l /D, )  ( 1 )  

The expected behavior at interfaces, therefore, is quite similar 
to that in homogeneous s ~ l u t i o n . ~ ~ ~  In contrast to ET in 
homogeneous solution, however, there has been remarkably little 
systematic documentation of solvent-related barrier effects for 
interfacial p roce~ses .~ -~  Among the apparent experimental 
problems are (1) large and variable interfacial work terms 
(adsorption, diffuse double-layer effects, etc.) which tend to be 
both reactant and solvent specific and (2) inherently inefficient 
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one-dimensional diffusion to planar electrodes'-which tends 
to make all but the slowest reactions difficult to access by 
conventional methods.* Slow reactions, in turn, often feature 
large internal reorganizational barriers, spin changes, bond 
breakage, coordination number changes, andlor other kinetic 
complexities which make the identification and isolation of 
purely solvent related effects difficult. Nevertheless, we wish 
to report here the experimental observation of interfacial rate 
behavior consistent with eq 1, where the experimental variable 
is the reactant size and where the reactants have been chosen 
so as to feature primarily solvent-based activation energetics. 
As detailed below, one of the keys in the investigation has been 
the use of highly ordered pyrolytic graphite (HOPG) as an 
electrode material. With HOPG, we have additionally observed 
that solvent barriers can be significantly reduced by employing 
electronically delocalized reactants. 

Figure 1 shows a plot of the log of the standard electrochemi- 
cal rate constant (k,)  for each of a series of mononuclear and 
dinuclear transition-metal complexes (primarily ruthenium) 
versus the inverse size of the complex. The reactants in all 
cases are low-spin d6 species. They were chosen, in part, 
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Figure 1. The log of k, for the indicated ET reaction (normalized to 
k, for Ru(NH~)~~+/ '+) versus the inverse radius of the reactant (eq 3). 
The electrode material is low-defect-density HOPG;l6*I8 the electrolyte 
is 1 M aqueous KCl. Line drawn is a best-fit line for all  point^.'^.^^ 
Key to data points: (1) RU(NH~)~~+/'', (2) R~(NH3)5(pyridine)~+"+, 
(3) (NH3)~Ru(pyrazine)Ru(NH3)55+'~+, (4) (NH3)5Ru(pyrazine)Ru- 
(NH3)56+/5+, ( 5 )  t-(pyridine)(NH3)&u(pyrazine)Ru(NH3)4(p~ridine)~+~~+, 
(6) t-(pyridine)(NH3)4Ru(pyrazine)Ru(NH3)4(p~razine)~+/~', and (7) 
Fe(phenanthr0line)3~'/'+ (data for point 7 obtained from ref 16d). 

because of known (or anticipated) minimal internal reorgani- 
zational The kinetics data plotted are actually 
ratios of k, values in comparison to k, for the slowest reac- 
tion: l2 

Ru(NH3);+ - R u ( N H ~ ) ~ ~ +  + e- (2) 

Rate parameters, in all cases, were determined by digital 
~irnulation'~ and/or Nicholson analysis14 of experimental cyclic 
voltammograms obtained at conventional sweep rates (ca. 200 
mV/s). Typical absolute rate constants for the R U ( N H ~ ) ~ ~ + / ~ +  
reaction at HOPG were ca. 1 x cm s-l. In contrast, the 
same reaction proved immeasurably fast (k ,  > 3 x lop2 cm 
SKI) at a conventional glassy carbon electrode/aqueous solution 
interface. l5 The large rate difference is consistent with the more 
general observation by McCreery and co-workers of rate 
decreases of 4-5 orders of magnitude for a broad range of redox 
couples at low-defect-density HOPG.16d While the origin of 
the attenuation effect is somewhat obscure (presumably it is 
electronic...), we (and others16) find that it is reproducible below 
a critical threshold surface defect density.I8 In any case, rate 
attenuation is essential; without it, none of the targeted redox 
systems are kinetically accessible by the slow sweep-rate 
voltammetry method. A second key feature of the HOPG/ 
aqueous interface is its extremely low ~apacitance'~"~~~-which 
translates into the buildup of negligible amounts of surface 
charge, even at electrode potentials far removed from the 
potential of zero charge (ca. -0.2 V vs SCE19). This is 
tremendously advantageous because it effectively eliminates 
electrostatic work terms (diffuse double-layer effects20) which 
might otherwise dominate the interfacial kinetics (especially with 
reactant and product charges varying from 2+ to 6+).21322 

Returning to Figure 1, the size parameter chosen-in light of 
eq 1-was the inverse of the reactant radius. This parameter is 
reasonably well defined for roughly spherical, homoleptic 
complexes such as Fe(bpy)?+ and Ru("&~+ but is obviously 
not so well defined for heteroleptic complexes-especially 
dinuclear complexes. For these complexes, we used an average 
radius defined as 

(3) 

where x ,  y, and z are metal-ligand bonding axes. While the 
averaging formula obviously is somewhat arbitrary, we note 
that it has been successfully used previously to correlate size- 

- ra" - (rxr&)1'3 

dependent metal-complex diffusion  coefficient^?^ redox reac- 
tion entropies,24 and homogeneous electron self-exchange rate 

Furthermore, in our study the two complexes with 
the best defined radii bracket those that require size averaging. 
In any case, the observed correlation is compelling: k , i ncreases 
exponentially with increasing reactant radius. The slope of the 
log(k,) vs raV-' plot is -10 8, or 14 kcal mol-' 8, for AG* vs 
raV-l (correlation coefficient 0.93).25,26 If d is unchanging, the 
expected slope from eq 1 is 22 kcal mol-' 8,. (On the other 
hand, if we assume (following Hush) that d varies as the sum 
of the reactant radius (eq 3) and the solvent inner-layer thickness 
(ca. 3.3 8, for water), the expected slope is -15 kcal mol-' 

Related studies3" in homogeneous solution (work-cor- 
rected bimolecular self-exchange) yield a slope of 45 kcal mol-' 
A, Le., somewhat greater than the factor of 2 difference expected 
if d variations are again neglected.2,20 

On the basis of eq 1, we reasoned that redox reaction site 
sizes could be effectively increased and solvational barriers 
effectively lowered by delocalizing electrons over multiple 
trapping sites. The central data points in Figure 1, corresponding 
to the stepwise oxidation of the electronically delocalized 
Creutz-Taube ion ((NH3)5Ru-pyrazine-R~(NH3)5~+) and a 
trans-pyridine-substituted analog?l appear to confirm the 
hypothesis:22 Interfacial ET rates are significantly greater for 
these species than for the parent mononuclear complexes. From 
eqs 1 and 3, one would expect further solvent barrier diminution 
and further rate acceleration with larger oligomeric species. 
Extension and delocalization in only one dimension (Le., linear 
oligomerization) are anticipated, however, to induce only modest 
additional barrier lowering. For example, extension of the 
Creutz-Taube ion to six metal centers total (i.e., the largest 
currently known Creutz-Taube oligomer;32 z-axis length of -42 
8,) should further decrease AG,* by only about 0.9 kcal mol-' 
(based on extrapolation of the correlation in Figure l).33 A more 
effective strategy would appear to be to induce delocalization 
in a second (or even third) dimension. Selected ligand-bridged 
clusters would be attractive target systems.34 

We conclude that (1) solvent reorganization does play a major 
role in defining redox reactivity at surfaces, (2) the dependence 
of the barrier height on molecular reactant size is reasonably 
well predicted by conventional dielectric continuum theory, and 
(3) the barrier height is susceptible to manipulation and 
diminution by a valence delocalization strategy. 
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