Temperature Effects for Localized versus Delocalized Optical Intervalelce Transitions

Joseph T. Hupp* and Yuhua Dong

Department of Chemistry, Northwestern University
Evanston, Illinois 60208

Received January 26, 1993

Recently we have begun to explore the role of temperature in optical intervalence charge-transfer (IVCT) processes. For symmetrical mixed-valence complexes, we find that the energetics of IVCT are essentially unaffected by changes in temperature. For asymmetric complexes, on the other hand, substantial energetic effects can exist, at least for valence localized systems.

We have shown experimentally that the latter effects are related to the temperature dependence of the redox asymmetry component (ΔE) of the overall intervalence absorption energy, E_{IVCT}. We now report that valence-localized and valence-delocalized asymmetric systems respond differently to temperature perturbations, the latter exhibiting essentially no dependence of E_{IVCT} on temperature. We also offer a primitive interpretation of the contrasting behavior and show that it is consistent with an elementary theoretical picture of the overall IVCT process.

Two closely related mixed-valence complexes were examined: (2,2'-bpy)ClRu-pyrazine-Ru(NH$_3$)$_5$Cl$_2$ and (4,4'-bpy)ClRu-pyrazine-Ru(NH$_3$)$_5$Cl$_2$. In CD$_2$NO$_2$ as solvent, 1 displays a broad Gaussian IVCT absorption band ($\Delta v/\nu = 4900$ cm$^{-1}$, $\lambda_{max} = 1350$ nm) typical of valence-localized systems. In contrast, 2 exhibits a significantly narrower ($\Delta v/\nu = 2540$ cm$^{-1}$), somewhat asymmetric, and substantially red-shifted absorption spectrum ($\lambda_{max} = 1643$ nm), strongly reminiscent of the Creutz-Taube ion and other valence-delocalized systems. We ascribe the differences between 1 and 2 primarily to differences in redox asymmetry. Recall that systems become delocalized when H_T (i.e., twice the initial-state/final-state coupling energy) exceeds the sum of χ (the reorganization energy) and ΔE. For 2, the presence of several methyl substituents on bipyridine and replacement of a trans NH$_3$ ligand by 4-methylpyridine renders the trapping sites nearly equivalently energetic ($\Delta \chi \approx 0$). Examination of the temperature dependencies of the two spectra (Figure 1) yields $dE_{IVCT}/dT = -18$ cm$^{-1}$ deg$^{-1}$ for 1 and $+1$ cm$^{-1}$ deg$^{-1}$ for 2. The differences are striking, both quantitatively and qualitatively. Some insight can be gained, however, by considering a generalized (two-site) expression for IVCT energies:

$$E_{IVCT} = \sqrt{(\chi + \Delta E)^2 + 4H_T^2}$$

(1)

If both χ and H_T are viewed as temperature independent, and if the sum of χ and ΔE appreciably exceeds $2H_T$ (i.e., strong valence localization), then the temperature coefficient for E_{IVCT} is expected to be simply dE_{IVCT}/dT where ΔE is most precisely defined as the zeroth-order redox asymmetry, i.e., the asymmetry when electronic coupling is absent. On the other hand, when $2H_T$ is much larger than $\chi + \Delta E$ (i.e., strong delocalization), dE_{IVCT}/dT should approach zero, regardless of the magnitude of $d\Delta E/dT$.

For 1 and 2, $d\Delta E/dT$ can be estimated from the known variable-temperature electrochemistry of either (bpy)$_2$ClRu-py-Ru(NH$_3$)$_5$Cl$_2$ or the less strongly coupled analog, (bpy)$_2$ClRu-4,4'-bpy-Ru(NH$_3$)$_5$Cl$_2$. On this basis, $d\Delta E/dT = -8$ cm$^{-1}$ deg$^{-1}$. Notably, this estimate differs from the observed dE_{IVCT}/dT for 1 by more than a factor of 2. Apparently an additional factor contributes. One possibility (admittedly speculative) is that as the temperature decreases (and ΔE increases) 1 becomes more strongly valence localized, and charge is transferred upon IVCT absorption, and the difference between ground- and excited-state dipoles is enhanced. This, in turn, would lead to an increase in the solvent polarization component of ΔE with decreasing T. Presumably this additional factor would become important only when electronic coupling is fairly strong and valencies are only moderately well localized (as with 1). Consistent with this hypothesis, replacement of pz by 4,4'-bpy (i.e., diminution of coupling) changes dE_{IVCT}/dT to -8 cm$^{-1}$ deg$^{-1}$.

For 2, the magnitude of dE_{IVCT}/dT (i.e., near zero) is consistent with our expectation for a simple delocalized system; the sign, however, is something of a surprise. It may be that the assumption that $H_T/\Delta E = 0$ is zero is rigorously incorrect here. Alternatively, it may be that the appropriate zeroth-order ground-state description of 2 is one in which the bipyridylruthenium, rather than amminerruthenium site, is oxidized. If so, then the sign of $d\Delta E/dT$ would be reversed, and dE_{IVCT}/dT should be near zero but positive.

(3) In the limit of weak electronic and electrostatic interaction, the temperature dependence of ΔE, of course, is related directly to the temperature dependence of the potential for the individual electron donor and acceptor sites; these differences in turn reflect the solvational consequences of size and charge differences for the two trapping sites (see: Hupp, J. T.; Weaver, M. J. Inorg. Chem. 1984, 23, 3639).

(4) To avoid cumbersome descriptions, we apply the notation "IVCT" to transitions involving both localized and delocalized complexes, despite the lack of charge transfer character for the latter.

(5) The synthesis of 1 has been described previously. 2 was prepared analogously. The mixed-valence (4+) forms of both ions were obtained by using Fe(bpy)$_3^{2+}$ as oxidant. Elem. Anal. Caused for 2 (in reduced form): C, 31.65; H, 3.69; N, 12.02. Found (1st sample): C, 31.26; H, 3.89; N, 10.35; (2nd sample): C, 28.43; H, 3.49; N, 11.56. Despite the less than ideal elemental analysis results, proton NMR experiments confirmed the presence of 4,4'-CH$_2$-bpy, pyrazine, and 4-methylpyridine ligands in the correct proportions. The NMR measurements, however, also revealed the presence of small amounts (variable from sample to sample) of an unidentified, but evidently electroinactive, impurity.

(10) Prior studies with symmetrical class II systems (where ΔE is necessarily zero, and $E_{IVCT} \approx \chi$) do not show that χ (in the totally localized limit) is essentially T independent (i.e., $dE_{IVCT}/dT = 0$).

(11) Unpublished studies with (NH$_3$)$_3$Ru-py-Ru(NH$_3$)$_5$Cl$_2$, a class III system for which ΔE is necessarily zero and $E_{IVCT} \approx 2H_T$, reveal no T dependence for the latter. On the other hand, modest increases in IVCT oscillator strength accompany cooling of both 1 and 2 in CD$_2$NO$_2$ as well as acetone. This suggests that H_T, under class II or weakly class III conditions, may possibly increase slightly with decreasing T (thereby yielding a slight negative contribution to dE_{IVCT}/dT).

(13) Recall that the fraction of charge transferred during intervalence absorption is approximately $1 - (2H_T/E_{IVCT})$, if a simple two-state (Huber–Mulliken) description is employed.

Finally, we have also examined 1 and 2 in acetone as solvent. Here the ΔEs are larger, and both complexes appear to be valence localized. Consistent with this description, both display large negative absorption-energy temperature coefficients: $\frac{dE_{\text{IVCT}}(1)}{dT} = -8$ and $\frac{dE_{\text{IVCT}}(2)}{dT} = -12$ cm$^{-1}$ deg$^{-1}$. Presumably, with appropriate modification of ancillary ligands and/or solvent, intermediate behavior could be seen. It might then be possible to use temperature changes to interconvert the complex between predominantly localized and predominantly delocalized forms. Work in progress with (bpy)$_2$Cl Ru-pz-Ru(NH$_3$)$_4$(pyridine)$^{4+}$ supports this intriguing notion and will eventually be reported elsewhere.

Acknowledgment. Support for this work from the National Science Foundation (CHE-8921590 and CHE-9303682) and the donors to the Petroleum Research Fund, administered by the American Chemical Society, is gratefully acknowledged. J.T.H. additionally thanks the Henry and Camille Dreyfus Foundation (Dreyfus Teacher-Scholar Award, 1991–1996) for unrestricted support.