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Abstract

A porphyrin-based `̀ molecular square'' (1), prepared by reaction of a dipyridylporphyrin species with Re(CO)5Cl and subsequently with

ZnII acetate, was functionalized with 2-(methylene-15-crown-5-ether)-nicotinoyl ester (2). Functionalization was achieved by axially

ligating each of the four available ZnII sites within the porphyrins. (2) was synthesized by reaction of 2-(hydroxymethyl)-15-crown-5-ether

and nicotinoyl chloride in CH2Cl2. Functionalization renders the square's ¯uorescence emission intensity responsive to added Na� and, to a

lesser extent, K�. # 2001 Published by Elsevier Science B.V.
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1. Introduction

The advantages of molecular ¯uorescence or lumines-

cence for sensing have been summarized [1] and many of the

structural features which control ¯uorescence ef®ciency

have been delineated [2,3]. Rigid macrocycles (molecular

squares) based on cis bridging ligation of transition metals

represent an unusual class of compounds having signi®cant

promise in solution-phase host±guest, inclusion and mole-

cular recognition chemistry [4±7]. The 50 or so available

squares have been constructed from platinum, palladium,

nickel, tungsten, and rhenium precursors and have been

assembled in both homometallic and heterometallic forms

[4±7]. In addition, selected neutral squares have been eval-

uated in the solid state as thin ®lms. In ®lm form, the

compounds exhibit exceptional nanometer-scale porosity,

enormous internal surface areas, and useful molecular bind-

ing properties Ð where binding can be followed, for exam-

ple, by quartz crystal microgravimetry [7].

In solution, on the other hand, host±guest binding is

typically monitored via NMR spectroscopy. In a few cases,

binding has also been monitored via changes in host

luminescence.

In this paper, we report on (a) the reversible functiona-

lization of a porphyrin-based molecular square (1) with a

known cation receptor (2-(methylene-15-crown-5-ether)-

nicotinoyl ester (2)), and (b) the use of the functionalized

square as a solution-phase sensing assembly (¯uorescent

assembly) for alkali metal ions.

2. Experimental

As described previously [8], the free base form of the

tetraporphyrin square was obtained in high yield by stoi-

chiometrically combining 2,8,12,18-tetrabutyl-3,7,13,17-

tetramethyl-5,15-bis-(4-pyridyl)porphyrin and Re(CO)5Cl

in 100 ml of freshly distilled 4:1 THF±toluene as solvent,

and then heating at re¯ux for 48 h. The analogous tetra-zinc

metallated square was obtained quantitatively by treating

the tetraporphyrin square with zinc acetate in

methanol� CH2Cl2. (2) was obtained from 2-(hydroxy-

methyl)-15-crown-5-ether and nicotinoyl chloride. Absorp-

tion and emission spectra were recorded by using a Cary 3

UV±VIS absorption spectrophotometer and an SPEX Flour-

omax spectro¯uorimeter.

3. Results and discussion

Fig. 1 illustrates the structure of the tetraporphyrin square.

A key feature is the use of tricarbonylrhenium chloro

fragments as corners. Despite the fact that rhenium is a

third-row transition metal, heavy-metal quenching of the

porphyrin-based luminescence appears to be absent. Indeed,

the room temperature luminescence lifetime of the photo-
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excited square assembly is nearly identical to that of the free

porphyrin ligand [8]. Interestingly, closely related porphyrin

squares featuring Pt(II) or Pd(II) corners are nonemissive

[9,10], apparently because of ef®cient redox quenching by

the corner entities [7] (Fig. 2).

As indicated in Fig. 3, emission from the zinc metallated

square decreases upon addition of the pyridine-functiona-

lized crown ether in CH2Cl2 as solvent. While the guest

lacks obvious energy-transfer or electron-transfer quenching

capabilities, a ligation-induced decrease in host lumines-

cence intensity is not unexpected [11,12]. An observed 5 nm

limiting red shift in the emission spectrum of (1) supports the

contention that (2) interacts with the square via axial liga-

tion. From additional measurements at lower host concen-

trations, the host (1)±guest (2) binding constant is

1:1� 107 Mÿ1. Further insight into the binding is provided

by electronic absorption measurements. Host±guest mix-

tures in the ratio of 1:4 exhibit a quantitative shift of host Q

bands to longer wavelength at micromolar host concentra-

tions. The absorption studies are consistent, therefore, with a

binding geometry which entails pyridine±crown ligation of

all available Zn sites [13±15]. As shown in Fig. 4, the

emission is enhanced by NaSCN addition. The emission

energy, however, is unchanged. A control experiment, where

the receptor ligand is omitted, yields no change in emission

intensity with added NaSCN. We ascribe the effect, there-

fore, to a subtle tuning of Zn±N interactions brought about

by Na� binding within the crown ether. From Fig. 4, the

apparent binding constant is 4� 107 Mÿ1. Because the

measurements were made at concentrations near the host

(1)±guest (2) dissociation limit, it is conceivable that the true

Na� binding constant is higher. A similar experiment with

KSCN yields a smaller intensity enhancement and a binding

constant of ca. 8� 106 Mÿ1.
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Fig. 1. Structure of porphyrin square (1) and methylene crown ether (2).

Fig. 2. Porphyrin square with one methylene crown ether moiety.
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