Solvent-Induced Electron Transfer and Delocalization in Mixed-Valence Complexes. Electrochemistry

Gregory A. Neyhart, Joseph T. Hupp, Jeff C. Curtis, Cliff J. Timpson, and Thomas J. Meyer*

Contribution from the Department of Chemistry, The University of North Carolina, Chapel Hill, North Carolina 27599-3290

Received October 23, 1995

Abstract: For the RuIII/II couple in [(bpy)2ClOs(4,4′-bpy)Ru(NH3)5]3+ (bpy = 2,2′-bipyridine; 4,4′-bpy = 4,4′-bipyridine), E1/2 varies linearly with the donor number (DN) of the solvent with a slope of −26 ± 3 mV/DN unit ranging from nitromethane to dimethyl sulfoxide. For the OsIII/II couple, the variation is −3 ± 1 mV/DN unit. Plots of ΔE1/2 = E1/2(2) − E1/2(1) vs DN (E1/2 is the half wave potential for the first or second wave by cyclic voltammetry) undergo a change in slope at DN ~ 14 where there is a change in oxidation states in the mixed-valence form from OsIII−RuIII to OsIII−RuII. By extrapolation of these data, AG° for the mixed-valence equilibrium, [(bpy)2ClOsIII(4,4′-bpy)RuIII(NH3)5]3+ ⇌ [(bpy)2ClOsIII(4,4′-bpy)RuIII(NH3)5]2+ + 1/2 O2, varies from +5.8 kcal/mol in nitromethane to −7.5 kcal/mol in dimethyl sulfoxide. It differs from ΔE1/2 by up to ~20% even though it has sometimes been assumed in the literature that ΔE1/2 = −ΔG°. For [(bpy)2ClOsIII(pz)Ru(NH3)5]3+ (pz = pyrazine) both OsIII and RuIIII couples are significantly solvent dependent for solvents of DN < 24. In these solvents oxidation states in the mixed-valence form are OsIII−RuII. The slopes of E1/2 vs DN plots are −21 ± 4 mV/DN unit (RuIIIII) and −8 ± 4 mV/DN unit (OsIIIII). At DN > 24 the oxidation states switch to OsII−RuIII and the solvent dependence reverts to being largely in RuIIIII. There is evidence in the electrochemical data, in comparisons between [(bpy)2ClOs(pz)Ru(NH3)5]3+ and [(bpy)2ClOsIII(4,4′-bpy)RuIII(NH3)5]3+, for significant through-bridge electronic coupling in [(bpy)2ClOsIII(pz)Ru(NH3)5]3+. The difference in behavior is caused by extensive H-bonding to the solvent at −RuIII(NH3)52+ in [(bpy)2ClOsIII(pz)Ru(NH3)5]3+. This mixs solvent character into dξ(RuIIIII) which decreases electronic coupling across the bridge.

Introduction

The solvent helps determine the energies of charge transfer absorption bands1,2 and the dynamics of electron transfer in solution.3,4 The effect of solvent on intervalence transfer (IT) bands in mixed-valence complexes (e.g. eq 1, L = pyrazine (pz) or 4,4′-bipyridine (4,4′-bpy)) is especially well documented.2,5,6

\[
\begin{align*}
\text{[(bpy)2ClRu(II)(L)Ru(III)(NH3)5]+} & \xrightleftharpoons{hv} \text{[(bpy)2ClRu(III)(L)Ru(II)(NH3)5]2+}
\end{align*}
\]

Absorption bands acquire a solvent dependence from two sources.7 Because of the Franck–Condon character of the transitions, the final state is surrounded instantaneously by the solvent polarized as in the initial state, but in the electronic environment of the final state. This contributes a solvent reorganization energy. For unsymmetrical complexes AG° ≠ 0, and the free energy change is usually solvent dependent as well.1,15,5,8–10

For the couples [Ru(NH3)5(L)]3+/2+, specific interactions between individual solvent molecules and ammine ligands cause E1/2 to vary by ~400 mV in solvents ranging from nitromethane to...
to dimethyl sulfoxide. Solvent variations have been used to “tune” ΔG° to explore specific solvation in mixed solvents, and probe electronic coupling in mixed-valence complexes. In this and the following manuscript we demonstrate that changes in solvent can be used to induce intramolecular electron transfer and interconvert oxidation states in $[(bpy)_2ClO_4(L)Ru(NH_3)_5(H_2O)]^{2+/3+}$ (L = pz, 4,4'-bpy). For the L = pz complex this is accompanied by a significant change in the extent of through-bridge electronic coupling. These complexes were chosen for study since potentials for the couple $[Os(bpy)_2(py)Cl]^2+/3+$ and $[Ru(NH_3)_5(py)]^{4+/5+}$ are comparable in acetonitrile and yet only the latter is appreciably solvent dependent. This allows the energetics of intramolecular electron transfer in the bridged complexes to be tuned to an appreciable degree by varying the solvent. Part of this work has appeared in a preliminary communication and similar observations have been made for a related mixed-valence complex of Ru. Experimental Section

Materials. The solvents nitromethane (Gold Label spectrophotometric grade), nitrobenzene (Gold Label reagent grade), benzonitrile (HPLC grade), formamide (reagent grade), and dimethylacetamide (HPLC grade) were all obtained from Aldrich and used as received. Acetonitrile, propylene carbonate, acetone, methanol, dimethylformamide, and dimethyl sulfoxide were all obtained from Burdick and Jackson and used without further purification. House distilled water was purified by passing through a Millipore water purification system.

Tetra-n-butylammonium hexafluorophosphate (TBAH) was prepared from tetra-n-butylammonium bromide and HPF$_6$ by using the method of Calvert. It was recrystallized three times from ethanol. The salt KPF$_6$ was purchased from Aldrich and recrystallized two times from water. A small sample of decamethylferrocene was kindly provided by Professor Michael Weaver.

Preparation of Complexes. The salts $[(bpy)_2ClO_4(L)(PF_6)]$ (L = 4,4'-bpy, pz) were prepared by literature procedures and $[(bpy)_2ClO_4(L)Ru(NH_3)_5(H_2O)]PF_6$ by a modification of a literature procedure. In a typical preparation for $L = \text{pz}$, 105 mg of $[(bpy)_2ClO_4(pz)]PF_6$ (0.138 mmol) and 55 mg of $[Ru(NH_3)_5Cl_2](PF_6)_2$ was placed in a 25 mL Erlenmeyer flask. The flask was fitted with a rubber septum and purged with Argon (Baker, reagent grade) through syringe needles for 30 min. A volume of 4 mL of deaerated acetone was added by syringe and the mixture stirred at room temperature in the absence of light for 1 h. The volume of the solution was maintained by the occasional addition of 1 mL portions of deaerated acetone. The PF$_6^-$ salt was precipitated by adding the reaction mixture dropwise to 100 mL of stirring CH$_2$Cl$_2$ and collected by filtration. The resulting solid was recrystallized from acetone/CH$_2$Cl$_2$ and then from acetone/diethyl ether, stirred for 30 min in 75 mL of CH$_2$Cl$_2$ to remove excess monomer, and collected by filtration. Typical yields were 65%.

Electrochemical Measurements. Both cyclic voltammograms and differential pulse polarograms were acquired using a two compartment cell in which a platinum disk working electrode (2-mm diameter) and platinum wire auxiliary electrode occupied one compartment and the reference electrode occupied the second. The compartments were separated by a glass frit. For solvents of low donor number, where preferential solvation by water could occur, the electrochemical measurements were carried out in a Vaccum Atmospheres drybox, and a silver wire was used as a quasireference electrode. For solvents of high donor number, the experiments were carried out outside the drybox and a saturated calomel electrode (SCE) was used as the reference. Water from the atmosphere affected the potentials of the $[Ru(NH_3)_5Cl_2]^{4+/5+}$ couple in solvents of low polarity. For example, in dry nitromethane exposed to the atmosphere, the potential drifted negatively within a period of minutes. The potential appropriate to the dry solvent was restored by adding molecular sieves as a drying agent. All three electrodes were immersed in the same solvent/PF$_6^-$ electrolyte mixture. The sample and the internal reference compound Fe(C$_2$Me$_5$)$_2$ were added to the working/auxiliary compartment. The potential was controlled by using a PAR Model 173 potentiostat. For cyclic voltammetry, a PAR Model 175 universal programmer was used as a potential sweep generator. Current versus applied potential traces were recorded on a Hewlett-Packard 7015B X–Y recorder. Commercially available single (Cricket Graph) and multiparameter (Statworks) regression routines were used to plot the data and determine linear correlations.

Results

Electrochemical data were obtained for $[(bpy)_2ClO_4(L)Ru(NH_3)_5Cl_2](PF_6)_3$ (L = 4,4'-bpy) by cyclic voltammetry and differential pulse polargraphy in a series of solvents. The electrolyte was either KPF$_6$ or [N(n-C$_4$H$_9$)$_2$]PF$_6$ (TBAH) at 0.1 M except where a limited solubility dictated a lower concentration. Typically, two waves were observed except for L = 4,4'-bpy in benzonitrile, acetonitrile, or propylene carbonate where the waves were overlapping and could not be deconvoluted. Values of $E_{1/2}$ for the two waves and the differences between them are listed in Table 1. The Fe(C$_2$Me$_5$)$_2$ couple was used as an internal reference in order to avoid junction potential effects. The potentials for this couple vs the saturated calomel electrode (SCE) were, for example, -0.20, -0.09, and $+0.01$ V in acetonitrile, acetone, and dimethyl sulfoxide. Under our experimental conditions, $E_{1/2}$ values for the Fe(C$_2$Me$_5$)$_2$ couple differed only slightly (but up to 55 mV in DMSO) from the data reported previously by Sahami and Weaver, who used a ClO$_4^-$ electrolyte.

For $[(bpy)_2ClO_4(4,4'$)-bpy$]Ru(NH_3)_5Cl_2]^{3+/4+}$, the variations in $E_{1/2}$ for the first, $E_{1/2}(1)$, and second, $E_{1/2}(2)$, waves with the donor number (DN) of the solvent are illustrated in Figure 1. The solvents in which these measurements could be made were somewhat limited by a lack of solubility and/or the instability of the complexes toward decomposition. The assignments of the waves to redox couples were based on how the potentials of the complexes varied with solvent and were verified by spectrophotometric measurements. In earlier work it was shown that variations in $E_{1/2}$ of 20–30 mV per donor number unit exist.
Table 1. \(E_{1/2} \) and \(\Delta E_{1/2} (=E_{1/2}(2) - E_{1/2}(1)) \) for \([\text{(bpy)}_2\text{ClOs}(\text{L})\text{Ru(NH}_3)_5]^{3+} (\text{L} = \text{pz, 4,4'-bpy}) \) in V vs \([\text{Fe(C}_5\text{Me}_5)_2]^{2+}/0 \) at 295 \(\pm 2 \) K

<table>
<thead>
<tr>
<th>Solvent (abbreviation, DN) (a)</th>
<th>(E_{1/2}(1))</th>
<th>(E_{1/2}(2))</th>
<th>(\Delta E_{1/2})</th>
<th>(E_{1/2}(1))</th>
<th>(E_{1/2}(2))</th>
<th>(\Delta E_{1/2})</th>
<th>(\Delta \Delta E_{1/2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>nitromethane (NM, 2.7)</td>
<td>0.55</td>
<td>0.75</td>
<td>0.20</td>
<td>0.60</td>
<td>1.05</td>
<td>0.46</td>
<td>0.29</td>
</tr>
<tr>
<td>benzotriazole (BN, 4.4)</td>
<td>0.52</td>
<td>0.69</td>
<td>0.17</td>
<td>0.55</td>
<td>1.01</td>
<td>0.46</td>
<td>0.29</td>
</tr>
<tr>
<td>benzotriazole (BN, 1.9)</td>
<td>0.51</td>
<td>0.76</td>
<td>0.17</td>
<td>0.55</td>
<td>1.01</td>
<td>0.46</td>
<td>0.29</td>
</tr>
<tr>
<td>acetonitrile (AN, 14.1)</td>
<td>0.53</td>
<td>0.81</td>
<td>0.28</td>
<td>0.55</td>
<td>1.01</td>
<td>0.46</td>
<td>0.29</td>
</tr>
<tr>
<td>propylene carbonate (PC, 15.1)</td>
<td>0.49</td>
<td>0.76</td>
<td>0.27</td>
<td>0.55</td>
<td>1.01</td>
<td>0.46</td>
<td>0.29</td>
</tr>
<tr>
<td>formamide (FA, 24)</td>
<td>0.43</td>
<td>0.76</td>
<td>0.32</td>
<td>0.55</td>
<td>1.01</td>
<td>0.46</td>
<td>0.29</td>
</tr>
<tr>
<td>dimethylformamide (DMF, 26.6)</td>
<td>0.14</td>
<td>0.48</td>
<td>0.32</td>
<td>0.31</td>
<td>0.66</td>
<td>0.35</td>
<td>0.03</td>
</tr>
<tr>
<td>nitromethane (NM, 2.7)</td>
<td>0.10</td>
<td>0.45</td>
<td>0.35</td>
<td>0.28</td>
<td>0.67</td>
<td>0.39</td>
<td>0.04</td>
</tr>
<tr>
<td>nitromethane (NM, 2.7)</td>
<td>0.07</td>
<td>0.46</td>
<td>0.39</td>
<td>0.25</td>
<td>0.65</td>
<td>0.40</td>
<td>0.01</td>
</tr>
</tbody>
</table>

\(a \) For the \([\text{Fe(C}_5\text{Me}_5)_2]^{2+}/0 \) couple, \(E_{1/2} = +0.307 \) V vs SCE, in \(\text{CH}_3\text{CN}, 0.2 \text{ M in LiClO}_4 \) (Bard, A. J.; Faulkner, L. F. Electrochemical Methods. Fundamentals and Applications; John Wiley and Sons: New York, 1980). \(b \) Donor numbers were taken from ref 20c. \(\Delta \Delta (E_{1/2} = E_{1/2}(\text{L} = \text{pz}) - E_{1/2}(\text{L} = \text{DMF}) - \Delta E_{1/2}(\text{exr})) \), the \(\Delta \Delta E_{1/2}(\text{exr}) \) values were taken from Figure 3. \(c \) \([\text{Fe(C}_5\text{Me}_5)_2]^{2+} \) was insufficiently soluble in this solvent to utilize the \([\text{Fe(C}_5\text{Me}_5)_2]^{2+}/0 \) couple as a reference.

Discussion

The effect of solvent on \(E_{1/2} \) for the couples \([\text{Ru(NH}_3)_3(L)]^{3+/2+} \) is thought to originate in specific hydrogen bonding interactions in which the \(N=\text{H} \) bonds of the ammine ligands act as electron pair acceptors and individual solvent molecules as donors. In \([\text{Ru(NH}_3)_3(\text{L})]\) \(\Delta E_{1/2} \) for the ammine couple correlates well with the donor number of the solvent, Figure 1. The donor number provides a measure of the relative ability of the solvent to donate an electron pair.

The variations can be understood qualitatively. In a low donor number solvent such as nitromethane, the electron donor pairs on solvent molecules are weakly basic in the Lewis acid–base sense and H-bonding with the ammine ligands is weak. In dimethyl sulfoxide, which has a high donor number, electron pairs are more basic and H-bonding stronger. Enhanced electron donation by H-bonding stabilizes RuIII relative to RuII and decreases \(E_{1/2} \). H-bonding provides a mechanism for electronic coupling between the solvent and the internal electronic structure of the complex. This effect is in addition to the usual electrostatic interactions that polarize the solvent. Specific H-bonding interactions with individual solvent molecules dominate the solvent dependence for ammine couples. These are additive in the number of ammine ligands. For \([\text{Ru(NH}_3)_3(L)]^{3+/2+} \) and \([\text{Ru(NH}_3)_3(\text{bpy})]^{3+/2+} \), variations in \(E_{1/2} \) with solvent are −31 and −17 mV/DN unit, respectively.

[Figure 1](#) shows the dependence of \(E_{1/2} \) on donor number for solutions containing the mixed-valence complex \([\text{Ru(NH}_3)_3(L)]^{3+/2+} \). The fractional composition of each depends on the donor number of the solvent. The potential–donor number region where the various oxidation state distributions are dominant are labeled on the figure.

For couples of the type \([\text{Ru(NH}_3)_3(L)]^{3+/2+} \) it is also known that \(E_{1/2} \) values for the polypyridyl couples are relatively insensitive to solvent. Under our conditions, \(E_{1/2} \) for \([\text{Os(2,2'-bpy)}_2\text{ClOs(4,4'-bpy)}\text{Ru(NH}_3)_5]^{2+} \) varied from 0.53 V in nitromethane to 0.44 V in dimethyl sulfoxide. Near the “cross-over point” where the two lines in Figure 1 intersect, only a single wave appeared in the cyclic voltammograms. In these solvents the spectral properties of solutions containing the mixed-valence complex were used to establish the dominant oxidation state isomer and this provided the basis for assigning experimental potentials to the two couples. The slope of the \(E_{1/2} \) versus donor number relationship for the Os(III/II) couple in Figure 1 is \(\Delta \Delta E_{1/2} \) for the Os(III/II) couple and the open squares are for the Ru(III/II) couple. The slopes of the linear correlations in the various donor number regions are shown on the figure.

As noted in the following paper, this coincides with a change in oxidation state in the mixed-valence ion from OsIII–RuII to OsIII–RuIII. The two isomers coexist in trimethyl phosphate (DN = 23) and in formamide (DN = 24).

For couples of the type \([\text{Ru(NH}_3)_3(L)]^{3+/2+} \) it is also known that \(E_{1/2} \) values for the polypyridyl couples are relatively insensitive to solvent. Under our conditions, \(E_{1/2} \) for \([\text{Os(2,2'-bpy)}_2\text{ClOs(4,4'-bpy)}\text{Ru(NH}_3)_5]^{2+} \) varied from 0.53 V in nitromethane to 0.44 V in dimethyl sulfoxide. Near the “cross-over point” where the two lines in Figure 1 intersect, only a single wave appeared in the cyclic voltammograms. In these solvents the spectral properties of solutions containing the mixed-valence complex were used to establish the dominant oxidation state isomer and this provided the basis for assigning experimental potentials to the two couples. The slope of the \(E_{1/2} \) versus donor number relationship for the Os(III/II) couple in Figure 1 is \(\Delta \Delta E_{1/2} \) for the Os(III/II) couple and the open squares are for the Ru(III/II) couple. The slopes of the linear correlations in the various donor number regions are shown on the figure.
Solvent-Induced Intramolecular Electron Transfer in [(bpy)2ClO4-(4,4′-bpy)Ru(NH3)5]3+. The method of presenting the data in the $E_{1/2}$ vs donor number plot in Figure 1 is deceiving in suggesting a phase diagram where variations in applied potential and donor number are both continuous. The donor number is not. The experiments were performed in pure solvents having discrete donor numbers. It remains to be seen if a continuous donor number is only slightly solvent dependent because there are no ammine ligands and no molecular basis for strong, specific interactions with the solvent. $E_{1/2}$ for the [(Fe(bpy))3+]1/2+ couple varies by only $-(2-3)$ mV/DN unit.10a

A plot of $\Delta E_{1/2} = E_{1/2}(2) - E_{1/2}(1)$ versus donor number for [(bpy)2ClO4-(4,4′-bpy)Ru(NH3)5]3+. The dashed lines are extensions of the best fit lines into regions where each of the mixed-valence isomers is thermodynamically unstable. The slopes of the lines are -17 ± 4 and 26 ± 4 mV/DN.

$-26 + 3$ mV/DN unit for the RuIII couple in [(bpy)2ClO4-(4,4′-bpy)Ru(NH3)5]3+. The [(bpy)2ClO4(L)]3+/2+ couple is only slightly solvent dependent because there are no ammine ligands and no molecular basis for strong, specific interactions with the solvent. For the [(Fe(bpy))3+]1/2+ couple varies by only $-(2-3)$ mV/DN unit.

Solvent-Induced Intramolecular Electron Transfer in [(bpy)2ClO4-(4,4′-bpy)Ru(NH3)5]3+. The method of presenting the data in the $E_{1/2}$ vs donor number plot in Figure 1 is deceiving in suggesting a phase diagram where variations in applied potential and donor number are both continuous. The donor number is not. The experiments were performed in pure solvents having discrete donor numbers. It remains to be seen if a continuous variation in potential, as suggested by the lines drawn in Figure 1, could be achieved by utilizing solvent mixtures.10a,12

A plot of $\Delta E_{1/2} = E_{1/2}(2) - E_{1/2}(1)$ as a function of donor number is shown in Figure 3. The quantity $\Delta E_{1/2}$ is the driving force for comproportionation and related to the free energy of comproportionation by $\Delta E_{1/2} = -\Delta G^\circ_{\text{com}}$. There are two comproportionation equilibria. The one that dominates depends on the donor number of the solvent. At $DN < 14.5$ it is,

$$[(\text{bpy})_2\text{ClO}_4^{\text{III}}(4,4'-\text{bpy})\text{Ru}^{\text{III}}(NH_3)_5]^3+ + [(\text{bpy})_2\text{ClO}_4^{\text{III}}(4,4'-\text{bpy})\text{Ru}^{\text{II}}(NH_3)_5]^4+ \rightleftharpoons 2[(\text{bpy})_2\text{ClO}_4^{\text{III}}(4,4'-\text{bpy})\text{Ru}^{\text{II}}(NH_3)_5]^4+ (2a)$$

and at $DN > 14.5$,

$$[(\text{bpy})_2\text{ClO}_4^{\text{III}}(4,4'-\text{bpy})\text{Ru}^{\text{III}}(NH_3)_5]^3+ + [(\text{bpy})_2\text{ClO}_4^{\text{III}}(4,4'-\text{bpy})\text{Ru}^{\text{II}}(NH_3)_5]^4+ \rightleftharpoons 2[(\text{bpy})_2\text{ClO}_4^{\text{III}}(4,4'-\text{bpy})\text{Ru}^{\text{III}}(NH_3)_5]^4+ (2b)$$

For a hypothetical solvent with a donor number at the inflection point in Figure 3 ($DN \sim 14.5$), $\Delta G^\circ = 0$ for the intramolecular electron transfer in eq 3.

$$[(\text{bpy})_2\text{ClO}_4^{\text{III}}(4,4'-\text{bpy})\text{Ru}^{\text{II}}(NH_3)_5]^4+ \xrightarrow{\Delta G^\circ} [(\text{bpy})_2\text{ClO}_4^{\text{II}}(4,4'-\text{bpy})\text{Ru}^{\text{III}}(NH_3)_5]^4+ \quad (3)$$

In this hypothetical solvent, $\Delta G^\circ = 0$ for the equilibria in eqs 2a and 2b as well.

Figure 3 provides a graphical illustration of the fact that variations in solvent can be used to induce intramolecular electron transfer. There is a change in slope at $DN \sim 14.5$ from -17 ± 4 to 26 ± 4 mV/DN unit as the dominant form of the mixed-valence ion changes from [(bpy)2ClO4(pz)RuIII(NH3)5]4+ to [(bpy)2ClO4(pz)RuIII(NH3)5]4+. The change in sign of the slope can be explained qualitatively by examining the redox processes involved and the equilibria in eqs 2.

In low donor number solvents, oxidation of OsIII—RuII occurs to give OsIII—RuIII. In high donor number solvents, oxidation gives OsIII—RuIII. $E_{1/2}$ for the two couples would be the same (~0.53 V) in a hypothetical solvent of donor number ~14.5. (Benzonitrile, acetonitrile, and propylene carbonate have donor numbers in this region and the RuIII and OsIII waves overlap.)22 If stabilization of −RuIII(NH3)5+ by electron pair donation from the solvent dominates, the left hand side of eq 2a is increasingly favored as the donor number is increased. $\Delta E_{1/2}$, the driving force for comproportionation, decreases.

In eq 2b the driving force for comproportionation increases with donor number because of enhanced stabilization of the two −RuIII(NH3)5+ groups on the right-hand side compared with only one on the left. The magnitudes of the slopes in the two regions are different, but the difference is nearly within experimental error. It may be caused by the different charge types of the ions in which −RuIII(NH3)5+ is found (+5 or +4).

By extrapolation, in a solvent of $DN = 0$, it would be easier to oxidize OsIII than RuII by ~0.29 V. In DMSO, the solvent of highest donor number used, it is easier to oxidize RuII than OsIII by ~0.39 V. Equilibrium at $DN = 14–15$ results from a balance between ease of oxidation in the absence of donor number interactions, which favors oxidation at OsIII, and stabilization by solvent, which favors oxidation at RuII. The total variation with solvent for the RuIII couple is ~0.78 V. For the OsIII couple it is ~0.10 V.

Thermodynamics of Intramolecular Electron Transfer. The $E_{1/2}$ vs donor number data in Figure 3 are shown extended into donor number regions where the two mixed-valence isomers are thermodynamically unstable with regard to the disproportionation equilibrium in eq 2 (the dashed lines). In these regions the oxidation state distribution is the non-thermodynamic one, OsIII—RuIII in solvents of high donor number, and OsIII—RuII in solvents of low donor number. The extrapolated values of $\Delta E_{1/2}$ cannot be obtained by direct measurement. The mixed-valence isomers are unstable with regard to each other and with regard to disproportionation into OsIII—RuII + OsIII—RuII.

It is possible to calculate ΔG° for intramolecular electron transfer in reaction 3 in a particular solvent by taking the difference between the experimental and extrapolated values of $\Delta E_{1/2}$ in Figure 3. For reaction 3, which is spontaneous at $DN > 14.5$, ΔG° (eV) $= 1/2(\Delta E_{1/2} - \Delta E_{1/2}(\text{extr}))$. In this equation, $\Delta E_{1/2}(\text{extr})$ is the extrapolated value of $\Delta E_{1/2}$ and can be read from the plot in Figure 3. A plot of ΔG° vs DN for reaction 3 is shown in Figure 4. In solvents of $DN < 14.5$, reaction 4 is spontaneous. In solvents of $DN > 14.5$ reaction 3 is spontaneous.

$$[(\text{bpy})_2\text{ClO}_4^{\text{III}}(4,4'-\text{bpy})\text{Ru}^{\text{II}}(NH_3)_5]^4+ \rightarrow [(\text{bpy})_2\text{ClO}_4^{\text{III}}(4,4'-\text{bpy})\text{Ru}^{\text{III}}(NH_3)_5]^4+ (DN < 14.5) \quad (4)$$

In the classical limit, ΔG° and the reorganizational energy χ determine the IT band energy,2,6,7,24

$$E_{op} = \Delta G^\circ + \chi$$

In the older mixed-valence literature, $\Delta E_{1/2}$ is sometimes equated to $-\Delta G^\circ$. In fact, $\Delta E_{1/2}$ measures $\Delta G^\circ_{\text{com}}$ for reaction 2 and...

$^{(23)}$ This equation was derived by adding $-\Delta G^\circ$ for eq 2a ($=\Delta E_{1/2}$) and ΔG° for eq 2b in solvents of $DN < 14.5$ ($=\Delta E_{1/2}(\text{extr})$) gives $\Delta G^\circ = \Delta E_{1/2} - \Delta E_{1/2}(\text{extr})$. This gives $\Delta G^\circ = \Delta E_{1/2} - \Delta E_{1/2}(\text{extr})$ for, 2[(bpy)2ClO4(4,4′-bpy)RuII(NH3)5]4+ $\rightarrow 2[(\text{bpy})_2\text{ClO}_4^{\text{III}}(4,4'-\text{bpy})\text{Ru}^{\text{III}}(NH_3)_5]^4+$. ΔG° for eq 3 is 1/2 this value.
not ΔG^0 for reaction 3. The difference is that in low donor number solvents the electrochemical experiment measures the Os^{III}-Ru^{III} couple in [(bpy)$_2$ClOs$^\text{III}$(4,4’-bpy)Ru$^\text{III}$(NH$_3$)$_5$]$^{1+}$ and the RuIII-Ru^{II} couple in [(bpy)$_2$ClOs$^\text{III}$(4,4’-bpy)Ru$^\text{II}$(NH$_3$)$_5$]$^{1+}$.

In high donor number solvents the OsIII-Ru^{III} couple is measured in [(bpy)$_2$ClOs$^\text{III}$(4,4’-bpy)Ru$^\text{III}$(NH$_3$)$_5$]$^{1+}$ and the RuIII-Ru^{II} couple in [(bpy)$_2$ClOs$^\text{III}$(4,4’-bpy)Ru$^\text{II}$(NH$_3$)$_5$]$^{1+}$. As noted above, it is not possible to obtain ΔG^0 directly by electrochemical measurements.

As shown in the inset in Figure 4, the difference between ΔG^0 and ΔG_{com}^0 increases as the donor number is increased or decreased from DN = 14.5. In the solvents studied, the difference is as large as 0.06 eV, at high or low donor number. The quantity $\Delta G^0 - \Delta G_{\text{com}}$ is the free energy change for the reaction,

\[
[(\text{bpy})_2\text{ClOs}^{\text{III}}(4,4’-\text{bpy})\text{Ru}^{\text{II}}(\text{NH}_3)_5]^{4+} + \\
[(\text{bpy})_2\text{ClOs}^{\text{II}}(4,4’-\text{bpy})\text{Ru}^{\text{III}}(\text{NH}_3)_5]^{1+} \\
\rightarrow [(\text{bpy})_2\text{ClOs}^{\text{III}}(4,4’-\text{bpy})\text{Ru}^{\text{II}}(\text{NH}_3)_5]^{5+} + \\
[(\text{bpy})_2\text{ClOs}^{\text{II}}(4,4’-\text{bpy})\text{Ru}^{\text{II}}(\text{NH}_3)_5]^{3+}
\]

The total variation in this range of solvents (0.12 eV) is $\sim 20\%$ of the variation in ΔG^0. From this, the relationship $\Delta E_{1/2} = -\Delta G^0$ is not quantitatively valid.

There is a slight inconsistency between Figures 1 and 3 in the implied donor number at which the oxidation states interconvert. Based on spectroscopic measurements, $\Delta G^0 = 0$ for intramolecular electron transfer at the inflection point in Figure 3 (DN = 14.5) as it should.21 The crossing of the $E_{1/2}$-DN lines in Figure 1 occurs at a slightly lower donor number (DN = 12.8) because four different couples are measured, e.g., [(bpy)$_2$ClOs$^\text{III}$(4,4’-bpy)Ru$^{\text{II}}$(NH$_3$)$_5$]$^{1+}$, [(bpy)$_2$ClOs$^\text{III}$(4,4’-bpy)Ru$^{\text{II}}$(NH$_3$)$_5$]$^{2+}$, [(bpy)$_2$ClOs$^{\text{III}}$(4,4’-bpy)Ru$^\text{III}$Ru$^{\text{II}}$(NH$_3$)$_5$]$^{1+}$, and [(bpy)$_2$ClOs$^{\text{III}}$(4,4’-bpy)Ru$^{\text{II}}$(NH$_3$)$_5$]$^{1+}$. The variations in the pairs of couples with solvent are slightly different.

Solvent-Induced Electronic DeLOCALization in [(bpy)$_2$ClOs$^\text{II}$(pz)Ru$^\text{III}$(NH$_3$)$_5$]$^{3+}$. Although $\Delta E_{1/2} \approx 0$ V for [(bpy)$_2$ClOs$^{\text{III}}$(4,4’-bpy)Ru$^{\text{II}}$(NH$_3$)$_5$]$^{1+}$ in acetonitrile, it is 0.36 V for [(bpy)$_2$ClOs$^{\text{II}}$(pz)Ru$^{\text{III}}$(NH$_3$)$_5$]$^{1+}$. From the latter value, $\Delta G_{\text{com}}^0 = -0.36$ V for the equilibrium,

\[
[(\text{bpy})_2\text{ClOs}^{\text{III}}(\text{pz})\text{Ru}^{\text{III}}(\text{NH}_3)_5]^{4+} + \\
[(\text{bpy})_2\text{ClOs}^{\text{II}}(\text{pz})\text{Ru}^{\text{II}}(\text{NH}_3)_5]^{3+} \\
2[(\text{bpy})_2\text{ClOs}^{\text{III}}(\text{pz})\text{Ru}^{\text{II}}(\text{NH}_3)_5]^{4+}
\]
solvent independent (Figure 2). In these solvents $\Delta (\Delta E_{1/2}) \sim 0$ for [(bpy)$_2$ClOsII(pz)RuIII(NH$_3$)$_5$]$^{4+}$ compared to [(bpy)$_2$ClOsII-(4,4'-bpy)RuIII(NH$_3$)$_5$]$^{4+}$, Table 1. There is no evidence for significant stabilization of OsIII–RuIII by electronic delocalization.

Although the data are limited and the extrapolation long, the $E_{1/2}$ vs DN lines in Figure 3 for the Os$^{III/II}$ couple (top line) and Ru$^{III/II}$ couple (bottom line) in the three solvents of high donor number (DMF, DMA, and DMSO) intersect at DN $\sim 14–15$. This is the same donor number region in which OsIII–RuII and OsII–RuIII are in equilibrium in [(bpy)$_2$ClOs(4,4'-bpy)Ru-(NH$_3$)$_5$]$^{4+}$. By extrapolation, it is the donor number region where [(bpy)$_2$ClOsII(pz)RuIII(NH$_3$)$_5$]$^{4+}$ would be in equilibrium with a hypothetical form of [(bpy)$_2$ClOsIII(pz)RuII(NH$_3$)$_5$]$^{4+}$ having the delocalization energy of [(bpy)$_2$ClOsII(pz)RuIII-(NH$_3$)$_5$]$^{4+}$.

The increase in donor number at which OsIII–RuII and OsII–RuIII are in equilibrium, from DN ~ 14.5 for [(bpy)$_2$ClOs(4,4'-bpy)Ru(NH$_3$)$_5$]$^{4+}$ to DN ~ 23 for [(bpy)$_2$ClOs(pz)Ru(NH$_3$)$_5$]$^{4+}$, is also a consequence of enhanced delocalization for $L = \text{pz}$. A higher donor number (and enhanced solvation) is required to stabilize $-\text{Ru}^{III}$(NH$_3$)$_5$$^{3+}$ and overcome enhanced delocalization in OsIII–RuIII.

The implied difference in electronic structure between [(bpy)$_2$ClOsII(pz)RuIII(NH$_3$)$_5$]$^{4+}$ and [(bpy)$_2$ClOsII(pz)RuIII(NH$_3$)$_5$]$^{4+}$ is striking and of fundamental importance in accounting for the properties of the mixed-valence ion. The difference between isomers lies in specific solvent effects and differences between $-\text{Ru}^{III}$(NH$_3$)$_5$$^{3+}$ and $-\text{Ru}^{III}$(NH$_3$)$_5$$^{2+}$ in the extent of their H-bonding with the solvent. In OsII–RuIII, electron pair donation to $-\text{Ru}^{III}$(NH$_3$)$_5$$^{3+}$ from the solvent by H-bonding mixes solvent character into $\pi^*(\text{Ru}^{III})$ by electron donation. This mixing is enhanced in higher donor number solvents which decreases $\pi^*(\text{Ru}^{III})-\pi(\text{pz})$ mixing and $\pi^*(\text{Os}^{III})-\pi(\text{pz})-\pi^*(\text{pz})$ mixing and $\pi^*(\text{Os}^{III})-\pi^*(\text{pz})-\pi^*(\text{pz})$ coupling across the bridge. H-bonding is less important at $-\text{Ru}^{III}$(NH$_3$)$_5$$^{2+}$ and promotes through-bridge coupling. Electron donation to $\pi^*(\text{Ru}^{III})$ by H-bonding increases electron content at $\pi^*(\text{Ru}^{III})$ increasing $\pi^*(\text{pz})-\pi^*(\text{pz})-\pi^*(\text{pz})$ mixing and $\pi^*(\text{Os}^{III})-\pi^*(\text{pz})-\pi^*(\text{pz})$ coupling across the bridge.

Acknowledgment. The authors acknowledge the Army Research Office under Grants Nos. DAAL03-88-K-0192 and DAAL03-92-G-0198 and the National Science Foundation under Grant No. CHE-8503092 for support of this research.

JA953566+