
Roger M. Nielson* and Joseph T. Hupp*

Department of Chemistry, Northwestern University, Evanston, Illinois 60208

Received September 11, 1995

Introduction

In several recent studies we have observed that stepwise encapsulation of simple redox partners by weakly interacting molecular hosts can exert substantial kinetic and/or energetic effects upon thermal (self exchange) and/or optical (intervalence) electron transfer (ET) reactions.1-3 Effects upon thermal (self exchange) and/or optical (intervalence) ET reactions (i.e., 20- to 300-fold) are induced when only one redox partner serves as a guest. Under these conditions electron transfer effectively becomes coupled to host transfer and an energetically unfavorable redox asymmetry effect arises in the isolated ET step.3 We reasoned that related effects could exist based on combined electrostatic/hydrophobic association of host and guests. Described below are TMAFc2+ self-exchange studies in water with calix[6]arene-p-sulfonate,4 a negatively charged molecular host. This system was chosen because strong host/guest association had previously been established electrochemically and because the association strength was reported to depend upon guest oxidation state.5

![TMAFc2+](image)

TMAFc2+ in calix[6]arene-p-hexasulfonate

Experimental Section

Materials. [TMAFc][BF4], [TMAFc][BF4]2, and Na8[calix[6]arene-p-hexasulfonate (1-H)] were prepared and purified by literature methods.3,5,7

Rate Measurements. The electron self-exchange rate constant, k, was obtained via 1H NMR line broadening (Varian Gemini 300). In the fast exchange limit (applicable here):8

\[k = 4\tau(\Delta\nu_p)\gamma(\nu_p) \left(\frac{C_{\text{sum}}}{C_{\text{host}}} \right) \]

where \(\Delta\nu_p \) is the contact shift in Hz, \(\gamma_p \) and \(\nu_p \) are total mole fractions of TMAFc+ and TMAFc2+, respectively, \(w_p \) and \(\omega_p \) are line widths (half-height) for solutions containing TMAFc+, TMAFc2+, and mixtures of TMAFc+ and TMAFc2+, respectively, and \(C_{\text{sum}} \) is the combined total molar concentration of TMAFc+ and TMAFc2+. Total concentrations of TMAFc+ and TMAFc2+ were ca. 5 and 0.2 mM, respectively. The total concentration of calix[6]arene-p-sulfonate was varied between 0 and 48 mM.

Our initial attempts to measure k were frustrated by the decomposition of TMAFc2+ in the presence of the host. While the nature of the decomposition reaction was not investigated, we found that it could be circumvented by recrystallizing the calixarene from 1 M HCl; presumably this protonates phenolate sites and subsequently yields the fast exchange limit (applicable here): 8

\[\Delta E_i = (RT/F) \ln K \]

potential following host addition and F is the Faraday constant. We observed a ~47 mV shift, corresponding to \(K_2 = 54000 \pm 5000 \text{ M}^{-1} \text{.} \) Thus, the experiments offer an interesting contrast to TMAFc2+ association with \(\beta \)-cyclodextrin, where only the ferrocene form is detectably encapsulated.10

Figure 1 summarizes the effects of 1+ upon TMAFc2+ self-exchange kinetics. The unusual peak shifted response of k to added 1+ is strongly suggestive of stepwise encapsulation of the redox couple. Depending on the calixarene concentration, any of three reactions could contribute to the observed rate constant:11

(8) See, for example: Chan, M. S.; Wahl, A. C. J. Phys. Chem. 1978, 82, 2542.
(9) Again under slightly different conditions (unbuffered 0.05 M KCl), Kaifer and co-workers report a ~120 mV potential shift—implying a 110-fold increase in K upon oxidation to the ferrocenium form. Under their conditions, we find \(\Delta E_i = 60 \text{ mV} \) corresponding to a 20-fold increase in K. The origin of the discrepancy is unclear. An additional experiment in 0.1 M NaCl with the pH adjusted to 10 with NaOH, however, yielded \(\Delta E_i = 80 \text{ mV} \) (23-fold increase in K).
(10) A reviewer has pointed out that a TMAFc2+/β-CD binding constant of 150 M-1 has been reported recently by Imonigie and Macartney on the basis of electron transfer kinetics measurements (Inorg. Chim. Acta 1994, 225, 51). Direct electrochemical thermodynamics measurements, on the other hand, indicate a binding constant of 20 M-1 or less.3
(11) A fourth pathway involving TMAFc2+ and TMAFc2+1+ also must exist, but it should be of negligible significance under our conditions.
The independently measured shows that the available kinetic data are well described by eq.

\[
TMAFc^{2+} + TMAFc^{+} \rightleftharpoons TMAFc^{+} + TMAFc^{2+} \quad (4a)
\]

\[
TMAFc^{2+} \cdot 1^{n-} + TMAFc^{+} \rightleftharpoons TMAFc^{+} + TMAFc^{2+} \cdot 1^{n-} \quad (4b)
\]

\[
TMAFc^{2+} \cdot 1^{n-} + TMAFc^{2+} \cdot 1^{n-} \rightleftharpoons TMAFc^{+} + TMAFc^{2+} \cdot 1^{n-} \quad (4c)
\]

On the basis of the encapsulation constants, reaction 4b should dominate in the peak region. More generally, the observed rate constant can be written as

\[
k = (k_a[TMAFc^{2+}])[TMAFc^{+}] + \frac{k_b[TMAFc^{2+} \cdot 1^{n-}][TMAFc^{+}]}{[TMAFc^{2+}]_{tot}[TMAFc^{+}]_{tot}} \quad (5a)
\]

or equivalently (after algebraic manipulation)

\[
k = \frac{k_a + k_b K_2[1^{n-}] + k_c K_1 K_2[1^{n-}]^2}{1 + K_1[1^{n-}] + K_2[1^{n-}] + K_3 K_2[1^{n-}]^2} \quad (5b)
\]

For each rate measurement (each calixarene concentration), the specific reactant concentrations were calculated from the available equilibrium constants and the appropriate total TMAFc\(^{2+}\), TMAFc\(^{2+}\), and 1\(^{n-}\) concentrations as follows:

\[
[TMAFc^{+}]_{tot} = [TMAFc^{2+}] + [TMAFc^{+} \cdot 1^{n-}] = [TMAFc^{+}] + K_1[TMAFc^{+}][1^{n-}] \quad (6)
\]

\[
[TMAFc^{2+}]_{tot} = [TMAFc^{2+}] + [TMAFc^{2+} \cdot 1^{n-}] = [TMAFc^{2+}] + K_2[TMAFc^{2+} \cdot 1^{n-}] \quad (7)
\]

\[
[1^{n-}]_{tot} = [1^{n-}] + K_1[1^{n-}][TMAFc^{+}]_{tot} + K_2[1^{n-}][TMAFc^{2+}]_{tot} \quad (8)
\]

Figure 2 (k versus the concentration of free calixarene ([1\(^{n-}\)])) shows that the available kinetic data are well described by eq 5b and the independently measured \(K_1\) and \(K_2\) values. From the fit, \(k_a = 1.2 \times 10^7 \text{M}^{-1} \text{s}^{-1}\) (fixed by the initial point), \(k_b = 1.3 \times 10^8 \text{M}^{-1} \text{s}^{-1}\), and \(k_c = 1.6 \times 10^7 \text{M}^{-1} \text{s}^{-1}\). The roughly 10-fold rate preference for eq 4b (electron transfer coupled to host transfer) versus eq 4c or 4a (electron transfer only) contrasts with much larger rate inhibitions when ET is coupled to either \(\beta\)-cyclodextrin or crown ether host transfer. Two factors appear to be important. First, the degree of oxidation-state dependence of the guest/host association constant is much smaller for \(1^{(ox)}/\text{TMAFc}^{2+/+}\) than for either \(\beta\)-cyclodextrin/TMAFc\(^{2+/+}\) or the ammine ruthenium/crown ether system(s). We have previously noted that when self-exchange occurs sequentially via slow electron transfer and rapid host transfer, the observed rate should be attenuated by an isolated “redox asymmetry factor” equaling either \([K(\text{ox})/K(\text{red})]^{1/2}\) (if \(K(\text{ox}) < K(\text{red})\)) or \([K(\text{red})/K(\text{ox})]^{1/2}\) (if \(K(\text{ox}) > K(\text{red})\)). Thus, for the cyclodextrin and crown systems, rather large attenuation effects are both observed and expected. With the calixarene, however, the redox asymmetry factor is small (ca. 0.4) and apparently offset by other factors. The second important factor is the opposite changes carried by the free guests and the guest/host assembly. This circumstance should lead to attractive interactions and an enhanced ET “precursor complex” formation constant for reaction 4b, but repulsive interactions between reactants in eqs 4a and 4c. These effects obviously should be mitigated to some extent by the inert electrolyte—yet not completely eliminated. In any case, they appear to be large enough to more than offset the anticipated (small) redox asymmetry effect and to induce a net acceleration of the exchange kinetics.

Finally, it is somewhat surprising that the reactivity of the fully encapsulated reactants and products \((k_a)\) is so similar to that for the free species—despite the potential for either (1) inhibition of electronic coupling (rate deceleration) or (2) diminution of solvent reorganizational effects (rate acceleration). Conceivably both could be occurring, leading to little net rate effect. On the other hand, given the enormous differences in

(12) Equation 8 was solved for \([1^{n-}]\) using Mathcad Plus (Mathsoft, Inc., 1994).

(13) We neglect in our analysis any possible changes in \(k_a\), \(k_b\), or \(k_c\) with changes in ionic strength (changes in calixarene concentration).

(14) The data in Figure 2 were fit to eq 5b by using Microcal Origin 2.8 (Microcal Software, Inc., 1993).

(15) The similarity of \(K_1\) and \(K_2\) likely reflects compensating effects. Electrostatic interactions clearly should enhance calix[6]arene-p-sulphonate association with both \(\text{TMAFc}^{2+}\) and \(\text{TMAFc}^{+}\), but should be more important for the former. Hydrophobic interactions also should contribute to association with both \(\text{TMAFc}^{2+}\) and \(\text{TMAFc}^{+}\), but should be more important for the latter.
ionic strength between the solutions containing the smallest and largest amounts of calixarene, perhaps little significance should be attached to the similarities or dissimilarities in reactivity for the free vs fully encapsulated species.

Acknowledgment. We gratefully acknowledge the National Science Foundation for support of our work (Grant CHE-9303682 and Research Opportunity Award for R.M.N.). R.M.N. additionally thanks Southern Oregon State College for partial support for a sabbatical leave J.T.H. gratefully acknowledges the Dreyfus Foundation for unrestricted support (Teacher-Scholar Award, 1991–1996).