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Abstract

We introduce a general numerical approach for solving the Liouville equation of an isolated quadrupolar nuclide that can be used to
analyze the unitary dynamics of time-domain NQR experiments. A numerical treatment is necessitated by the dimensionality of the Liou-
ville space, which precludes analytical, closed form solutions for I > 3/2. Accurate simulations of experimental nutation curves, forbidden
transition intensities, powder and single crystal spectra, and off-resonance irradiation dynamics can be computed with this method. We
also examine the validity of perturbative approximations where the signal intensity of a transition is proportional to the transition
moment between the eigenstates of the system, thus providing a simple basis for determining selection rules. Our method allows us
to calculate spectra for all values of the asymmetry parameter, g, and sample orientations relative to the coil axis. We conclude by dem-
onstrating the methodology for calculating the response of the quadrupole system to amplitude- and frequency-modulated pulses.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Nuclear quadrupole resonance (NQR) spectroscopy is a
valuable method for probing electronic structure around
quadrupolar nuclei in solids [1]. Early theoretical treat-
ments of NQR experiments were based on stationary per-
turbation theory [1–3] and were unsuited for describing
later techniques that made use of coherent excitation and
detection schemes. One of the first reports to analyze
NQR experiments in the time domain was that of Pratt
et al. [4], who obtained exact solutions for the response
of an I = 3/2 spin to on- and off-resonance pulsed excita-
tion. With their explicit expressions at hand, subsequent
workers were able to develop ways of determining the elec-
tric field gradient (EFG) tensor from 2D nutation experi-
ments and other methods [5–7]. More recently, Xia et al.
[8,9] and Lee [10] have proposed a description of time
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domain NQR experiments of I = 1 and 3/2 nuclides in
terms of a fictitious spin-1/2 formalism.

Nuclides with I > 3/2 present greater mathematical diffi-
culties, and in past treatments the analysis of dynamics has
been simplified by assuming that the excitation pulses are
selective for only a single transition [11–15]. However,
closed form expressions for experimental observables
involve complex derivations, even for the most basic exper-
iments in the on-resonance, selective pulse limit. The selec-
tive pulse approximation also has the shortcoming that it
explicitly ignores the possibility of multi-transition excita-
tions, as might occur for degenerate transitions or broad-
band excitation pulses. This complication does not arise
when I 6 3/2 since the NQR spectra in these cases consist
of only a single doubly degenerate line.

Insofar as closed form expressions for NQR observables
can be difficult to derive and have been limited thus far to
simplified examples, numerical solutions of the Liouville
equation are an appealing alternative for obtaining useful
results without resorting to restrictive assumptions about
the resonance offset, selectivity of the excitation pulses, or
symmetry of the EFG tensor. While sophisticated
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computational methods have been developed for simulat-
ing high-field NMR experiments [16,17], numerical solu-
tions are not as straightforward to formulate for cases
where there is no dominant Zeeman interaction to define
an axis of quantization. Whether a numerical or analytical
approach is taken, the usual starting point for integrating
the equations of motion when there are time-varying fields
is to identify an interaction representation wherein all time-
dependent terms in the Hamiltonian can be neglected
because they have high frequencies and are non-resonant,
leaving only a static Hamiltonian. In this paper, we intro-
duce an interaction representation that proves to be partic-
ularly convenient for accurate numerical calculations. We
demonstrate with examples that this approach can be used
to treat problems that have been troublesome for analytical
methods, including the calculation of off-resonance excita-
tion effects, nutation spectra for I > 3/2, and transition
probabilities (both allowed and forbidden) for nuclides
with asymmetric EFG tensors. We also use numerical cal-
culations to consider the validity of approximating NQR
transition probabilities with transition moments, with their
significantly simpler mathematical forms.

2. Theory

The laboratory frame Hamiltonian of a single quadru-
polar nuclide in zero field, interacting with a linearly polar-
ized, amplitude modulated radiofrequency (rf) field, can be
written as

HL ¼HQ þ V ðtÞ; ð1Þ
where HQ and V(t) are the quadrupolar and rf interaction
terms, respectively. They can be expanded as

H Q ¼
e2qQ

4Ið2I � 1Þ 3I2
z � I2 þ g

2
ðI2
þ þ I2

�Þ
h i

; ð2Þ

V ðtÞ ¼ �2x1ðtÞ cosðxrf t þ /rfÞI � n: ð3Þ
In Eq. (3), n represents the direction of the coil axis relative to
the EFG principal axis system, and is specified by the longi-
tudinal and azimuthal angles h and /, respectively. Unlike
the high-field case, it is not a valid approximation to neglect
the effects of the counter-rotating component of V(t).

By analogy with the rotating frame formalism used to
analyze dynamics in high-field NMR spectroscopy [18], we
consider integrating the spin’s equations of motion in a
zero-field interaction representation defined by the operator

AzðgÞ ¼
XI

m¼�I

mjwmðgÞihwmðgÞj; ð4Þ

where |wm(g)æ is an eigenstate of the quadrupolar Hamilto-
nian HQ such that |wm(0)æ = |m æ is the mth eigenstate of Iz.
It follows from these definitions that Az(0) = Iz and

HQ ¼
XI

m¼�I

kmðgÞjwmðgÞihwmðgÞj; ð5Þ

where km(g) is the eigenvalue of HQ for the |wm(g)æ eigen-
state, and ½HQ;AzðgÞ� ¼ 0. The Hamiltonian in the interac-
tion representation defined by the unitary operator
UIF(g, t) = exp[�ixrfAz(g)t] is

HIFðg; tÞ ¼HQ;IFðgÞ þ V IFðg; tÞ ð6Þ
with

HQ;IFðgÞ � U yIFðg; tÞHQU IFðg; tÞ � xrfAzðgÞ

¼
XI

m¼�I
½kmðgÞ � mxrf �jwmðgÞihwmðgÞj: ð7Þ

From Eq. (7), we see that the applied field is resonant with
the splitting between two non-degenerate states |wm(g)æ and
|wn(g)æ when

jkmðgÞ � knðgÞj � xrf jm� nj: ð8Þ
The rf interaction Hamiltonian in this frame is given by:

V IFðg; tÞ � U yIFðg; tÞV ðtÞU IFðg; tÞ: ð9Þ
Following the high-field rotating frame example, we at-
tempt to eliminate oscillatory terms by approximating
VIF(g, t) with a time average

V IFðg; T Þ � T�1

Z T

0

V IFðg; t0Þdt0

¼ V IFðgÞ: ð10Þ

A weak, off-resonant rf field cannot induce transitions be-
tween two states |wm(g)æ and |wn(g)æ if

jkmðgÞ � knðgÞj � xrf jm� nj � x1; ð11Þ

which implies that an appropriate time T to evaluate the
integral in Eq. (10) is of the order 2p/x1. Rapidly oscillat-
ing terms in VIF(g, t), viz., terms with periods that are short
compared to 2p/x1, are effectively averaged to zero when
integrated over T, while static terms are unchanged. Time
dependent terms with periods of order 2p/x1 are more
troublesome, but for now we approximate such terms, if
present, by their time average as well.

Although VIF(g, t) may not commute with itself at all
times, it is valid to approximate it by its time average provid-
ed its eigen-frequencies are large compared to the transition
energies of HQ;IFðgÞ [18,20,21]. In contrast to the high-field
rotating frame case, VIF(g, t) cannot be written as a sum of
the Ix, Iy, and Iz operators, nor can simple symbolic expres-
sions for VIF(g, t) be derived by hand, especially for I > 3/
2. The most direct way to obtain V IFðgÞ therefore is to explic-
itly evaluate VIF(g, t) in an appropriate basis set and integrate
individual matrix elements according to Eq. (10).

We note that in the usual high field analysis, it is
straightforward to recognize and remove time-dependent
terms in VIF(g, t) without actually evaluating the integral
in Eq. (10). However, the integration gives an equivalent
result and provides a prescription for eliminating time-de-
pendent terms that can be conveniently implemented with
symbolic mathematical software.

If we accept the validity of Eq. (10), then HIFðg; tÞ
becomes piecewise constant during sequences of
pulses and delays, and the density operator in the interac-
tion representation, qIF(t), can be evaluated for periods
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both with and without the rf field. The NQR observable for
a solenoidal detector is magnetic dipole radiation, which
means that the time domain signal will have the form:

SðtÞ ¼ TrfqIFðtÞ½IIFðtÞ � n�g: ð12Þ
In the following examples, we assume that the initial con-
dition corresponds to a high-temperature thermal equilibri-
um described by a reduced interaction frame density
operator with the approximate form:

qIFð0Þ � �HQ=ZkT ; ð13Þ
where Z is the canonical partition function. The interaction
frame observable is defined by the operator:

IIFðtÞ � n ¼ U yIFðg; tÞI � nU IFðg; tÞ: ð14Þ
To obtain the real and imaginary parts of the usual demod-
ulated phase-sensitive signal at audio frequencies, the sig-
nal function represented by Eq. (12) must be multiplied
by cosxrft and sinxrft, respectively, and the sum frequency
discarded.
3. Results and discussion

3.1. Nutation spectroscopy

3.1.1. I = 3/2

NQR nutation curves can be computed with the equa-
tions obtained in the preceding section for comparison with
the exact solutions derived by Pratt et al. [4] for I = 3/2
Fig. 1. Comparison of nutation curves of Pratt et al. (blue) with the numeric
values of the RF offset, Dx. For clarity, the blue time domain signal has b
modulation. The coil axis is assumed to lie along x with respect to the EFG P
(Fig. 1). Whereas Pratt et al.’s equation is valid for a sta-
tionary laboratory frame, the signal amplitude shown by
the red curve in Fig. 1 is assumed to be detected in the
interaction frame defined by the operator in Eq. (4). The
nutation signal calculated with the exact solution is there-
fore an amplitude modulated sinusoid at the frequency of
the observed transition, while the signal in the interaction
representation is an oscillatory function at the offset fre-
quency but with the same amplitude envelope. The rapidly
oscillating term underneath the envelope is the real part of
the detected signal. At all values of offset calculated the two
show near-perfect agreement.

3.1.2. Extracting NQR parameters from nutation lineshapes
It has been previously demonstrated that the two inde-

pendent parameters characterizing the EFG tensor can be
determined from nutation powder lineshape measure-
ments of a single NQR transition [5]. While this tech-
nique is particularly useful for NQR spectra that
contain only a single resonance, it could also prove a
more facile experimental method for obtaining EFG ten-
sors than searching for the additional transitions in NQR
spectra with widely spaced lines. Closed form expressions
for nutation lineshapes have been derived for comparison
with experimental data for nuclei with I 6 3/2, but not
for higher spins.

The nutation lineshape was shown by Harbison et al.
to be strongly affected by the RF field inhomogeneity,
spectrometer frequency offset, and relaxation processes.
al simulation in the interaction representation (red) for g = 1 at different
een demodulated so the only time dependence shown is the amplitude
AS.
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Velikite et al. [19] analyzed nutation lineshapes for on-res-
onance excitation, and obtained an empirical formula for
determination of the asymmetry parameter from the NQR
nutation frequency singularities. Using the methods out-
lined in previous sections, we have computed nutation
curves for the transition of a spin-5/2 powder sample with
g = 0.5 for on- and off-resonance excitation. The results
for Dx/x1 = 0.5 and Dx/x1 = 0.25 (Fig. 2) illustrate the
strong dependence of the lineshape on the offset of the
carrier frequency from the NQR transition. Similar results
are found for the lineshape dependence on RF inhomoge-
neity. Clearly, the error in determinations of the EFG ten-
sor by this method is potentially large if such effects are
not taken into account in the lineshape simulations.

3.2. Perturbation theory approximation and selection rules

The NQR transition moment obtained by stationary
perturbation theory assuming a weak, on-resonance field
of the form in Eq. (3) is:

F ðg; h;/Þ / jhwmðgÞjI � njwnðgÞij
2
: ð15Þ

Since, HQ connects only |mæ states differing by an even
number, its eigenstates |wm(g)æ in general will be a linear
superposition of the Iz eigenstates |m ± kæ, where k is an
even number. It follows that F(g,h,/) will be non-zero if
and only if |m � n| is an odd number.

The perturbation theory approximation of the transition
moment exemplified by Eq. (15) is compared in Fig. 3 with
the time-domain signal intensity calculated numerically
according to the methods described in Section 2 for the
case of I = 7/2, g = 0.5. The detection coil is assumed to
lie along the x-axis of the EFG principal axis system. The
spectra obtained by the two approaches are in close quan-
titative agreement. The relative transition amplitudes for
both calculation methods are in good qualitative agree-
1.0 2.0 3.00.0

Δω/ω1 = 0.0
Δω/ω1 = 1.0
Δω/ω1 = 2.0

ω1

Fig. 2. On- and off-resonance nutation lineshapes for the spin-5/2
|w±3/2æ M |w±1/2æ NQR transition. The intensity scales of the spectra are
individually normalized.
ment. The only transitions with non-vanishing intensity
observed in the numerical spectrum correspond to |m � n|
an odd number, in agreement with the selection rule pre-
dicted from Eq. (15). The |w±7/2æ M |w±3/2æ transition is
not seen in the full calculation, but this is likely due to its
low probability.

3.2.1. Powder and single crystal spectra

The signal of an orientationally disordered sample is
computed as an average of signals from a weighted cross
section of orientations:

SpowderðgÞ ¼
Z 2p

0

Z p

0

Sðg; h;/Þ sin hdhd/: ð16Þ

Again, we take as an example the I = 7/2 case; other values
of I display similar behavior. The signal intensity shows a
strong dependence on the orientation of the coil axis rela-
tive to the EFG tensor of the quadrupole nuclei, especially
at larger values of the asymmetry parameter. Therefore, it
is expected that powder averages at large values of g will
affect the signal intensity appreciably when compared to
single crystals.

Fig. 4 compares the signal for the |wiæ M |wjæ transition
for a powder versus a single crystal in which the coil is ori-
ented along the x- and y-axis of the EFG coordinate
system.

The maximum signal intensity for a single crystal always
occurs when the coil is oriented along the x-axis of the
EFG tensor, i.e., when h = p/2 and / = 0. It is not surpris-
ing that powder averaging loses signal intensity when com-
pared to a single crystal in such cases. For non-zero values
of the asymmetry parameter the coil orientation plays an
important factor in the signal intensity as can be seen from
Fig. 5. Therefore, at the signal minimum which occurs
when the coil is oriented along the y-axis of the EFG ten-
sor, signal is actually lost in the case of single crystals com-
pared to the corresponding powder for g larger than about
0.1 � 0.5, depending on the specific transition.

3.3. Transient response to modulated rf fields

The performance of frequency-modulated pulses have
been calculated numerically for spin-3/2 nuclei, but not
for higher order spins [22]. Here, we illustrate the principles
and value of the theoretical approach outlined in Section 2
with a study of the transient NQR response of an I = 9/2
spin system to a shaped pulse.

For purposes of demonstration, we assume the ampli-
tude of the exciting pulse is given by a hyperbolic secant
function

x1ðtÞ ¼ x1sechðt � t0Þ; ð17Þ
where x0 is set to the transitions, |w±7/2æ M |w±1/2æ and
|w±9/2æ M |w±3/2æ, at g = 1. For the amplitude- and phase-
modulated pulse the phase was set to vary quadratically
with time, resulting in a linear chirp. The results are shown
in Fig. 6.
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The intensity of the pulse is decreased by a factor of
about 1/3 when phase modulation is added and rapidly
oscillating terms are observed in the nutation curve.
Such simulations can be helpful in determining the
effects of pulse sequences on the signal intensity before
performing experiments. For simplicity, relaxation is
ignored.

4. Conclusion

Informative and useful NQR measurements can be
made in the time domain that would not be possible
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in a frequency domain experiment. The theoretical
framework developed here provides general guidance
for the quantitative analysis of such experiments. The
validity and versatility of this approach has been dem-
onstrated by comparisons with perturbation theory cal-
culations and the exact results for the special case of
I = 3/2 spins.

The definition of the interaction representation and
the discarding of non-secular terms in the interaction
frame closely resembles the rotating frame approxima-
tions of high-field NMR spectroscopy. Unlike the sim-
pler high-field case however, explicit time-averaging is
required to identify and eliminate non-resonant time
dependent terms, as exemplified by Eq. (10). This
approximation may be refined by recognizing this expres-
sion as the zeroth order term of the Magnus expansion,
and adding higher-order corrections [20,21]. In this way,
even more complicated problems, such as those involving
simultaneous excitation of multiple transitions, may also
be treated. Furthermore, the method employed here is
suitable for Zeeman perturbed NQR and other situations
where interactions are small compared to the quadrupo-
lar splitting [23].

5. Supporting information

Simulation programs for the Matlab platform are avail-
able at the US Department of Energy’s ESTSC website
http://www.osti.gov/estsc/.
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