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Photosynthesis, the process by which energy from sunlight drives cellular metabolism, relies on a
unique organization of light-harvesting and reaction center complexes. Recently, the organization of
light-harvesting LH2 complexes and dimeric reaction center-light-harvesting I-PufX core complexes
in membranes of purple non-sulfur bacteria was revealed by atomic force microscopy [S. Bahatyrova
et al., Nature (London) 430, 1058 (2004)]. Here, we discuss optimal exciton transfer in a biomimetic
system closely modeled on the structure of LH2 and its organization within the membrane using a
Markovian quantum model with dissipation and trapping added phenomenologically. In a deliberate
manner, we neglect the high level detail of the bacterial light-harvesting complex and its interaction
with the phonon bath in order to elucidate a set of design principles that may be incorporated in artifi-
cial pigment-scaffold constructs in a supramolecular assembly. We show that our scheme reproduces
many of the most salient features found in their natural counterpart and may be largely explained
by simple electrostatic considerations. Most importantly, we show that quantum effects act primarily
to enforce robustness with respect to spatial and spectral disorder between and within complexes.
The implications of such an arrangement are discussed in the context of biomimetic photosynthetic
analogs capable of transferring energy efficiently across tens to hundreds of nanometers. © 2012
American Institute of Physics. [http://dx.doi.org/10.1063/1.4704656]

INTRODUCTION

The first step in photosynthesis is the absorption of light
by the light-harvesting (LH) apparatus.1 Transfer of energy
from the LH to the reaction center (RC) leads to a stabilized
charge-separated state across the membrane, which drives
chemical transduction. The high symmetry of the pigment-
protein complexes that compose the LH apparatus of bac-
terial photosynthesis as revealed by high-resolution x-ray
crystallography2, 3 has motivated extensive theoretical and ex-
perimental investigations in an attempt to understand both the
biological4 and physical5 significance of the structure of these
complexes and their organization within the membrane. The
photosynthetic bacterium Rhodobacter sphaeroides serves as
a model system to understand the functional role of this orga-
nization. The optical spectroscopy6–10 of individual pigment-
protein complexes in these bacteria has revealed that both
quantum and classical transport phenomena may play a role
in the remarkable efficiency of energy transfer in these sys-
tems. Theoretical work on these complexes at a high level
of detail9, 11, 12 has attempted to understand the influence of
quantum effects on both intra- and intermolecular transfer
within and between complexes.

In this report, we examine the implications of assuming
that the structure of these complexes is optimized for efficient
photo-capture and transport. Our model system borrows many
of the salient features with respect to structure and organi-
zation of the bacterial photosynthetic unit (PSU). We use a

a)Electronic mail: elharel@northwestern.edu. Tel.:847-467-7580.

simplified, Markovian quantum master equation that neglects
quantum coherence and treats the coupling between pigments
by simple dipole-dipole interactions only. It should be em-
phasized that we are not attempting to treat the system at a
high level of detail precisely because we are after elucidat-
ing the basic, underlying physics that may be used for de-
signing artificial systems with efficient light harvesting and
transport capabilities. Additionally, we are in no position to
prove that bacterial light harvesting operates by these prin-
ciples. In fact, it is likely that energy transfer in the bacte-
rial PSU operates under a different, albeit overlapping, set of
principles. Therefore, our model is not adequate to describe
what happens in nature. Rather, we are interested in utilizing
the organization of natural systems, such as these as an in-
spiration, for the design of artificial constructs with similar
functionality. By examining large structures of chromophores
arranged in different topologies, we are able to reproduce
(perhaps not uniquely) the most salient features of the LH part
of the PSU: nonomeric symmetry for a structure the diame-
ter of LH2, ring-like structure, inter-complex distance, inter-
complex topology, and inter-complex transfer time. Critically,
our model takes into account only the most basic features of
the complexes, allowing us to unambiguously identify princi-
ples that may simultaneously provide efficient energy capture
and transport. Furthermore, we demonstrate that quantum ef-
fects do not necessarily increase efficiency of transfer, but,
rather, make transfer more robust to disorder – a critical fea-
ture of any biological systems necessary to operate efficiently
in the “hot and wet” environment of the organism. Finally,
we briefly discuss approaches to mimic the high quantum
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efficiency and large exciton diffusion lengths that may sig-
nificantly increase performance over current artificial photo-
synthetic constructs.

THEORY

We consider a simple, Markovian model in which an ex-
citon system is coupled to a bath, ground state, and trap. We
treat the problem by formalism nearly identical to the one
used by Cao and Silbey in a recent publication13 in which
they investigated simple linear chains and simple, non-linear
topological arrangements of loops with three and four sites.
Instead of optimizing these problems analytically, which lim-
its us to very small systems, we utilize a genetic algorithm
(GA) to maximize the transfer efficiency across a large pa-
rameter space. We briefly summarize Cao and Silbey’s theo-
retical treatment and then apply it to our large, supramolecular
system. The master equation is given by

ρ̇ (t) = −[Lsys + Ldissip + Ldecay + Ltrap]ρ(t). (1)

where ρ is the density matrix and L are Liouville operators.
The system consists of N dipoles at positions, ri, including
one trap state, i = tr, coupled by the dipole-dipole interac-
tion, Vij . For the sake of simplicity the pigments will be as-
sumed to lie in a plane and their dipoles will all lie normal to
that plane (see Figure 2). While in LH2 this is not the case
(dipoles are in a circular arrangement and alternate between
nearly aligned to nearly anti-aligned), for the purposes of de-
signing a biomimetic system, we will only deal with chro-
mophores that are identical in structure and orientation. Fur-
thermore, while the membrane structure of Rh. sphaeroides is
a vesicle and not a plane, this effect is negligible in the context
of our analysis.

For the remainder of this work, the decay part of the
master equation will be ignored since kd � kt for the sys-
tems examined here, where kt represents the average trap
rate, and kd represents the relaxation rate to the ground
state. Ltrap represents irreversible decay to a trapping state,
e.g., a charge separated state in the photosynthetic reac-
tion center. It is expressed as [Ltrap]nm = (δtr,n + δtr,m)kt/2.
The factor of two comes from the fact that the theoret-
ical limit for relaxation in a population is twice that of
a coherence according to Redfield theory.14 Finally, the
dissipation is modeled as [Ldissip]nm = �∗

nm. To simplify
matters more, we make the stationary approximation in
which the coherence terms are time-independent. More ac-
curately, we assume that coherences dephase much more
rapidly than the time scale of population relaxation. This
approximation is validated by recent experimental results at
room temperature on isolated LH2 complexes using coherent
two-dimensional optical spectroscopy,15 which showed that
coherences last approximately 150 fs, compared to intra-
complex population transfer between rings that occurs in
about 800–1000 fs. Since inter-complex population trans-
fer between rings is even slower, we can safely neglect
the effects of quantum coherence for both intra- or inter-
ring transfer. With this assumption, the master equation

can be written as

i
∑

j �=n,m

(Hnjρjm − Hjmρnj )

−
{

(1 − δnm)�∗
nm + 1

2
(ktδn,tr + ktδm,tr ) + i�nm

}
ρnm

= ρ̇nmδnm + iHnm(ρm − ρn), (2)

where �nm = εn − εm is the detuning, εi is the energy, and ρ i

≡ ρ ii is the population at the ith site. H is the system Hamil-
tonian in the site basis. This equation can be conveniently ex-
pressed in block matrix form as follows:(

0 B

BT K

)(
ρP

ρC

)
=

(
ρ̇P

0

)
, (3)

where ρP = (ρ1, ρ2, . . . , ρ tr − 1, ρ tr + 1, . . . , ρN) and ρC = (ρ12,
ρ13, . . . , ρ1N, ρ21, ρ23, . . . , ρ2N, . . . , ρN1, ρN2, . . . , ρN − 1, N)
describes the coherence terms. Construction of the (N − 1)
x (N2 − N) matrix, B, and the (N2 − N) x (N2 − N) matrix,
K, are described in the Appendix for sake of continuity. From
(3), one gets that BρC = ρ̇P and BTρP + KρC = 0. Solving
these two equations gives

ρ̇P = −BK−1BT ρP . (4)

Integrating both sides and assuming that at very long times
the population of the system has all decayed to the trap state,
results in

ρP (0) = BK−1BT τ̂ , (5)

where τ̂ = (τ1, τ2, . . . , τtr−1, τtr+1, . . . , τN ) and
τn ≡ ∫ ∞

0 ρn(t) dt is the average residence time of exci-
tation at site n. The residence time represents the average
time excitation spends at a particular site, which should
naturally depend on the time dependence of the population.
In the model used here, the population experiences an
irreversible decay as we are neglecting coherent population
oscillations with the bath states. For instance, in the case of an
exponential decay, we have τn = ∫ ∞

0 e−t/τndt . However, the
trap is treated differently since its residence time is effectively
infinite using this definition (once excitation reaches the trap
it never leaves). Therefore, we define the average residence
time at the trap by τ tr = 1/kt (see Appendix). Solving for
the average residence time at each site requires inversion
of an (N2− N) x (N2 − N) matrix, followed by inversion
of an (N − 1) x (N − 1) matrix. Integrating out the time
dynamics simplifies the analysis and computational demands
considerably; for instance, for N = 100 sites the average
residence time can be calculated in a few seconds using a
quad-core workstation. The quantum efficiency of transport
to the trap is then given by

q ≈ 1

1 + kd〈t〉 , (6)

where 〈t〉 ≡ ∑N
i=1 τi is the average trapping time.

Classical transport may also be calculated using this basic
formalism. For any N-site system, the classical rate equations
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are given by

ρ̇n = −
N∑

i �=n

kn,i (ρn − ρi) − δn,trρtr , (7)

where the classical rate constant is given by

kij = 2�ij

(�∗
ij + kt

2 (δi,tr + δj,tr ))2 + �2
ij

|Vij |2. (8)

In this context, �ij, is the line width of the transition from
site i to site j. Again, one can solve this by simple matrix
inversion to find the classical average residence time at each
site. Unlike the quantum case, which scales as the square of
the system size, the classical rate equations scale linearly with
the size of the system, therefore requiring an N x N matrix
inversion.

RESULTS AND DISCUSSION

The organization of this section is as follows. First, we
show why ∼9-fold symmetry is optimal for a ring structure
approximately the diameter of LH2 (∼5 nm devoid of the
protein). Second, we show that nearly degenerate site ener-
gies lead to an optimal trapping time—suggesting that uti-
lizing identical chromophore units is advantageous. Next, we
show that ring-like structures are advantageous in terms of
structural disorder relative to linear chains or other topolo-
gies. This result is then related to the optimal organization
of complexes in a staggered or packed, rather than linear ar-
rangement. We also discuss whether the organization of these
complexes is highly tuned. Finally, we contrast purely clas-
sical and mixed quantum/classical transport. Our goal is to
demonstrate that a biomimetic system that incorporates cer-
tain design principles from the LH apparatus of purple bacte-
ria exhibits efficient transport and is robust with respect to dis-
order based on quantum mechanical principles, most notably
delocalization.

The organization of the LH apparatus on spherical
vesicles16 is shown in Figure 1. LH2 consists of two ring
structures, named the B800 and B850 ring for their respec-
tive absorption bands in the near infrared. The diameter of
a single, nonomeric LH2 complex is about 8 nm.17 Ignoring
the protein scaffold, the largest intra-ring distance for either
ring is about 5–5.5 nm. Therefore, we will set the diameter
of each ring in our model to 5 nm. Unlike LH2 in which the
transition dipole moments with the largest oscillator strengths
must be considered, in our model we take the dipole moments
of each pigment to have the same orientation (see Figure 2).
As mentioned earlier, in LH2 this is not the case, but for a
biomimetic system controlling the relative orientation of tran-
sition dipoles adds a significant synthetic challenge we would
prefer to avoid. We will discuss the implications of these dif-
ferences towards the end of this section.

In order to optimize the transport across a wide parame-
ter space, we used a genetic algorithm to minimize the average
trapping time as a function of the spectral detuning between
sites, �nm = εn − εm, the dephasing matrix, �*, and the trap
rate, kt, for rings containing N = 4 − 14 elements each. While

FIG. 1. Light-harvesting apparatus in purple bacteria. Illustration of spher-
ical chromatophore vesicle from Rh. sphaeroides showing organization of
light-harvesting complexes, LH2, and light-harvesting-reaction center com-
plex (LH1-RC). Architecture and arrangement of constituent chromophores
based on AFM images. Reprinted with permission from M. Sener, J. Olsen,
C. Hunter, K. Schulten, Proc. Natl. Acad. Sci. U.S.A., Vol. 104, Page 15723,
2007.

we cannot guarantee that our GA found a global minimum
for very large systems, it did reach the optimal solution in
cases where an analytical solution was available (N ≤ 4) and
in cases in which we could sample the entire parameter space
(N ≤ 6). The GA also converged on the exact solution for lin-
ear systems in both the quantum and classical models used
here of which analytical solutions are available. Furthermore,
the GA converged rapidly to the same solution regardless of
the initial conditions. The first system we studied consisted
of three staggered rings as shown in Figure 2. We choose
this system because it was the smallest non-collinear system
with intra- and inter-ring transfer. The optimal energies and
dephasing terms between coupled rings are shown in the fig-
ure. The coupling strength between site dipoles as given by
the magnitude of the off-diagonal matrix elements is shown
schematically by lines connecting sites. The color of the sites
in the top row indicates the optimal dephasing rates and the
color of the sites in the bottom row indicate the average res-
idence time. In each case, the donor and trap (i.e., acceptor)
states were chosen so at to keep the transfer distance approxi-
mately constant. Besides the number of elements per ring, the
topology remained the same for each case. A plot of the opti-
mal average transfer time against the number of elements per
ring shows that the minimum transfer time is reached around
8–9 elements per ring, with a tapering off at higher number of
elements. From a biological perspective, utilizing the small-
est number of elements that achieves the optimal performance
minimizes the biochemical costs associated with creation
of unproductive chromophores. Of course, in a biomimetic
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FIG. 2. Dipole moment orientation used in these models is shown in top right. Optimal number of elements per ring as found by a genetic algorithm. Average
trapping time as a function of the number of elements, N, in each ring. The diameter of each ring is 5 nm. The top row of images shows the strength of
electrostatic coupling (lines between sites). Dashed lines correspond to >5 cm−1 and <10 cm−1, dotted lines to >10 cm−1 and <20 cm−1, and thick lines to
>20 cm−1. Transition dipole at each site is normal to the plane. Color of connecting lines indicates the dephasing rate between two sites. Color of circles at each
site corresponds to their energies. The bottom row of images shows the average residence time at each site, indicated by the color of the circles. The average
trapping time is the sum of the average residence times at each site. The donor and trap states are labeled.

system, utilizing the minimum number of elements is also
critical for achieving low cost. It is also important to note that
as the number of elements per ring reaches N > 6, each ring
begins to act like a single entity. This stems from the fact that
when the coupling between rings is stronger than the detuning
between sites, the excitation becomes delocalized across the
rings. This delocalization feature is a critical element of the
design strategy that leads to high efficiency and robustness as
will be demonstrated below.

We then explored the question of topology—whether a
fixed structure was optimal compared to single, independent
sites. In making our comparison, we treat the fixed structure
as a single chromophore, which is justified based on the de-
localization argument for N > 6. Therefore, our metric for
comparison is simply the total transfer time across a given re-
gion of space as measured by the distance between the initial
excitation and the trap site. While we did incorporate a small
amount of intra-structure disorder (<0.1 nm), the degree of
disorder is set to be identical between chromophores. That is,
the disorder between fixed-structure units (i.e., rings) is set
equal to the disorder between individual chromophores (see
Figure 3). Therefore, when considering transport efficiency
alone, we do not care about the total number of chromophores
or how they are arranged; rather, we only consider the most
efficient means for given topological arrangement by which
to transfer energy from a fixed point of excitation to the trap
in the presence of spatial disorder.

We take the configuration consisting of five rings as
shown in the top panel of Figure 3 as an example to illustrate
our general conclusion that fixed structure are advantageous
compared to isolated pigments. Exciton diffusion through this
large complex takes about 80.5 ps after optimization of the de-
tuning, dephasing, and trap rate. The optimal trapping time is
reached when the site energies are almost completely degen-
erate, while the optimal dephasing rate appears to vary from
about 0 to 3 cm−1 (maps not shown). Now consider the same
overall transport length, but this time with single sites instead
of ring structures. Again, the optimal trapping rate is reached
when the site energies are nearly degenerate and with very
low values of the dephasing rate. This is in agreement with
classical rate equations for linear chains, since the classical
and quantum limits in this geometry are nearly identical.18

The average transfer time for the linear chain is only 21.5 ps,
about one quarter that of the ring structures. This suggests
that linear chains are more efficient, which intuitively makes
sense since the excitation spends less time on sites that do not
directly participate in transfer. Now consider what happens
when we incorporate spatial disorder, �r, in the system. At
0.5 nm disorder (�xmax = �ymax = 0.5 nm) in the plane, the
transfer time in the linear chain increases by nearly five-fold
to about 102 ps. For 1 nm disorder, it dramatically increases to
1.2 ns and with 2 nm disorder it reaches 6.2 ns. By stark con-
trast, in the ring chain, 0.5 nm disorder increases the transfer
time by about 50% to 113 ps, while 1 nm disorder increases
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FIG. 3. Chain of rings versus chain of individual chromophores. Comparison of the disorder between rings (left) and between chromophores (right) in a linear
arrangement. Total distance from donor to trap is approximately the same in each case (∼32 nm). �r is the maximum, random displacement in both the x and
y direction.

it to only 136 ps. A 2 nm disorder raises this further to only
164 ps.

We then repeated these runs multiple times (5 times for
the ring and 20 times for the linear chains) to obtain better
statistics and understand the general trends. Figure 4 shows
the dependence of the degree of average trapping time on
the spatial disorder. For the linear chain of sites, the depen-
dence is almost perfectly matched with a cubic dependence
on disorder. This originates from a combination of the cubic
dependence of the dipolar interactions with distance between
chromophores combined with the rate-limiting “breaks” in the
chain caused by spatial disorder. Also, notice that for the lin-
ear chain the error increases almost linearly with spatial disor-
der. A more detailed analysis of the effects of spatial disorder
on excitonic transfer and its connection to diffusion-like trans-
port will be the topic of a future publication. In the ring case,
by contrast, the dependence of the trapping time with spatial
disorder is approximately linear in the regime examined, �r
= 0–2 nm. These results clearly indicate that ring structures
are more robust to spatial disorder. Effectively, each ring acts
like a single chromophore such that a given amount of disor-
der appears smaller to a large chromophore than to a smaller
one. Therefore, it is advantageous to use large chromophores
for the sake of robustness, at least up to a point. If a ring gets
too large then the exciton diffusion length begins to suffer in
proportion to the ring diameter. One may ask why not adopt
some grid-like structure, or a ring that is partially filled in with
chromophores. As shown in Figure 5, such an arrangement
wastes efficiency as excitation is spent on sites that do not di-
rectly participate in the transfer processes. Or to put it another
way, transport across a ring scales as the diameter of the ring,

while using the interior scales with the square. Therefore, a
ring-like structure is optimal given the high symmetry needed
to transfer energy in any given direction, combined with the
inherent robustness utilizing larger effective units.

The linear ring chain arrangement brings up another
question of what is the best way to arrange the rings them-
selves with respect to one another. As can be appreciated
from the analysis above, disorder inevitably creates regions
in which the electrostatic coupling between two sites is too
weak for efficient transfer, i.e., the rate limiting step comes
about from “breaks” in the linear chain. Since each ring is
itself acting like a single chromophore, the same argument
can be made for a linear chain of rings as shown in Figure 6.
However, if the rings are staggered, then disorder is less likely
to produce such breaks. Or to put it more succinctly, a ring of
rings is optimal for the same reason that the ring was opti-
mal to begin with. One possible strategy based on this con-
sideration is to incorporate the reaction center in the center
of the ring of rings. Nature, as far as we know, does not do
this so a staggered or packed arrangement is a suitable com-
promise. Incorporating random disorder to the ring centers
and less than 0.1 nm disorder to the elements of the rings
themselves, demonstrates the robustness of the average trap-
ping time in this organization (see Figure 3 and accompany-
ing discussion). Disorder in the elements of the ring is small
in large part because of the relatively stiff protein scaffold,
which holds the chromophores in a precise arrangement due
to electrostatic interactions with nearby amino acid residues.
The electrostatic interactions between the rings also act to in-
crease the bandwidth of absorption beyond that possible by
individual rings so as to utilize more of the solar spectrum,
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FIG. 4. Rings are robust to spatial disorder. Plot of average trapping time versus static disorder between rings (red) and single sites (blue) from Figure 3.
Error bars for ring arrays are based on five runs through the optimization code. Error bars for array of single sites based on 20 runs through the optimization
code. Outliers larger than 5σ were removed from the analysis. Single site arrays were fit to third-order polynomial, while ring arrays were fit to a least squares
regression line. Inset shows a narrower window of trapping times (maximum of 400 ps). Arrows on the left of the inset indicate the mean residence time
with no spatial disorder between rings. The green bar indicates approximate excited-state lifetime of bacteriochlorophyll a, which represents the upper limit of
relaxation of the sites back to the ground state. The linear array of sites performs better than the linear array of rings with no spatial disorder, but is significantly
less robust to imperfections in positioning.

a feature critical to the LH apparatus as well.5, 19 The energy
spectra resulting from diagonalization of the system Hamil-
tonian for the packed and linear arrangements is shown in
Figure 6.

The approach we have used thus far is to optimize the
minimal trapping time as a function of a relatively large pa-
rameter space involving the energies at each site and ∼N2 de-
phasing terms between pairs of sites as well as the trapping
rate. This brings up the question of whether natural photo-
synthetic systems have somehow tuned all of these param-
eters through an evolutionary process. Intuitively, it may be
hard to believe that evolution could optimize so many param-
eters while still remaining functional. To explore this ques-
tion in greater depth, we ran an optimization procedure for

the 3-ring structure shown in Figure 7. Repeated runs to in-
sure proper convergence of our optimization scheme gave a
value of 63 ± 2 ps average trapping time from donor at site
6 to acceptor at site 10. We then ran the same model (no op-
timization), but now fixed all the energies to the same value
and set all the dephasing terms to be equal: �ij = 0 and �′

ij

= �′. As shown in Figure 7(c), the optimal trapping time is
reached at �′ = 10 cm−1 and kt = 110 cm−1, giving a trap-
ping time of 71 ps, which is only 10% higher than the optimal
value found by the GA. This suggests that the system is not
highly tuned and that only two, rather than ∼N2 parameters,
are necessary to achieve near-optimal transport. These results
suggest that a robust, artificial system may be fabricated with-
out molecular-level control of the site environment that would

FIG. 5. Grid-like array of chromophores is highly inefficient. Excitonic transfer through a grid-like arrangement of sites after optimization. Left: Colors of
circles represent site energies. Color of lines represent dephasing rate. Right: Color represent mean residence time at each site. A significant amount of time is
“wasted” at sites that do not directly link the donor to acceptor, i.e., sites 7, 13, and 19.
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FIG. 6. Two-dimensional packing is more robust to spatial disorder than linear chains. Electrostatic coupling between staggered (left) versus linear (right)
in the presence of spatial disorder between rings for a 7-ring system. Thin lines indicate weak coupling (>5 cm−1 and <10 cm−1), medium lines in-
dicate intermediate coupling (>10 cm−1 and <20 cm−1), and thick lines indicates strong coupling (>20 cm−1). Staggered arrangement maintains non-
negligible coupling strength and hence a path from donor to acceptor through multiple, neighboring rings. Linear arrangement more easily forms breaks,
which may effectively block energy transfer across large distances. Bottom right: spectrum calculated by diagonalizing the system Hamiltonian. Energy
spans approximately 200 cm−1 in each case—a major role of coupling is to break site degeneracy and broaden the spectrum for efficient absorption of solar
flux.

otherwise need fine-tuning through specific interactions with
a tailored spectral density.

Our results are also consistent with the results of other
works,20–25 in which finite dephasing assists the transport
since it eliminates stationary states that do not couple to the
trap state. It is also interesting to point out that the optimal
trapping time configuration predicts about 4–5 ps per site.
Given the delocalization of the exciton, this number is con-
sistent with photon echo measurements26 that show a ∼5 ps
decay of B850 band in intact membranes of Rh. sphaeroides.
Without adequate spatial or spectral resolution such spectro-
scopic measurements cannot straightforwardly distinguish de-
cay at one site from decay of a delocalized state. These re-

sults demonstrate that this very simple model reproduces (not
necessarily uniquely) most of the salient features of the spec-
tral and dynamical properties of the system without invoking
quantum coherence, details of the high-level structure of the
complex, or identification of the spectral density that couple
the pigments to the bath.

Next, we considered the role of quantum mechanics
in the exciton energy transfer compared to purely classi-
cal transport mechanisms for the 3-ring structure shown in
Figure 8. All parameters (geometry, electrostatic coupling el-
ements, site energies, dephasing, and trap rates) were held
the same; only the average residence times were computed
differently as discussed in the theory section. Interestingly,

FIG. 7. Near-optimal tapping is achieved without fine-tuning the system and bath. Left: Exciton transfer optimization achieved by a genetic algorithm to
minimize the average trapping time as a function of the mutual dephasing between sites, trapping rate, and site energies. In the case of three rings in this
arrangement, the optimal trapping time was found to be 63 ps. Right: Keeping the dephasing between sites constant and the site energies identical, the optimal
trapping time is found to be ∼70 ps. This indicates that fine-tuning of the system and the system-bath interactions is not necessary to achieve near-optimal
transfer efficiency.
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FIG. 8. Quantum transport is robust to static energetic disorder. Comparison of classical and quantum transport in the absence (a) and presence (b) of static
energetic disorder—difference in energies at each site. (a) When the site energies are degenerate, classical transport predicts a shorter trapping time—near zero
line width. Quantum transport predicts a slower trapping time by about a factor of three, but at a modest value of the dephasing rate. (b) When the site energies
are non-degenerate, classical transport undergoes a dramatic shift in the optimal line width. For the quantum case, changes in the optimal dephasing rate and
trapping rate are negligible. In this case, the quantum transport is faster and significantly more robust to changes in site energies.

the quantum model shows a slower optimal transfer time by
about a factor of three when compared to the optimal solution
found using the classical model (red and blue arrows in the
inset plot). At first glance, it appears then that quantum me-
chanics does not aid in transfer. However, when considering
the issue of robustness a more complicated picture emerges.
Again, consider the case in which the site energies are degen-
erate and the dephasing rate (i.e., line width for the classical
case) between all sites is identical (Figure 8(a)). The optimal
transfer time in the classical picture is at near-zero values of
the line width and at a trap rate of ∼125 cm−1. Again, this
picture is consistent from consideration of the denominator of
Eq. (A1). In the quantum case, the optimal transfer time is
reached at about the same trap rate, but at a finite dephasing
rate of about 10 cm−1. As before, tuning only these two pa-
rameters produces nearly the same transfer times as the full
optimization. Now, consider the case when there is energetic
disorder in the system (Figure 8(b)). Here, we have added
a random detuning up to a maximum of 100 cm−1 at each
site. In the quantum case, the trapping time map is remark-
ably similar in the presence of this type of disorder. However,
for the classical case, the line width shifts from near-zero in
the degenerate case to about 33 cm−1 in the disordered case.
Changes in site energies cause dramatic changes in the opti-
mal line width for purely classical transport, while for quan-
tum transport the system is significantly more robust. From a
biological perspective, this strategy is advantageous because
the dephasing rate/line width is set by the details of the protein
environment. Quantum mechanics acts to overcome changes
in the energy landscape of the system that appear as kinetic

traps in classical transport phenomenon, primarily through
delocalization and through mechanisms that allow transport
even between sites that are not directly coupled. These non-
local kinetic networks were recently explored by Cao and Sil-
bey for simple, linear chains and three- and four-level non-
linear topologies.13 Our model, which as already mentioned
is based on Cao and Silbey’s model, explicitly incorporates
these non-local kinetic networks, which provide many path-
ways from the initial site of excitation to the trap. Disorder
causes breaks in these pathways, but quantum mechanics cre-
ates an abundance of pathways, many of which are not af-
fected by such breaks, thereby providing a means by which to
transfer excitation. Of course, distant sites still need to cou-
ple in some way, meaning they must be in relatively close
proximity. Using the topology of the system provides an im-
portant handle by which to insure that chromophores are al-
ways near one another. Of course, this strategy only works
in the presence of delocalization; as is clearly shown here
(see, for instance, Figure 3) ring-like units with sufficient
inter-pigment coupling act like single chromophores owing
to quantum mechanical delocalization. In LH2, however, the
situation is considerably more complex as the time scales of
localization owing to the fluctuating environment may lead
to short-lived delocalized states that may not be able to cap-
italize on the robustness feature shown here for an artificial
system.

We should also mention other aspects of the problem
that we have neglected in our analysis, but play a significant
role in natural systems. For instance, we have neglected the
effects of coupling on the oscillator strength, which acts to
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significantly affect the energy transfer dynamics. Delocaliza-
tion caused by electrostatic coupling between neighboring
pigments causes oscillator strength to increase for specific
exciton states (this also depends critically on the relative ori-
entation of dipoles within each ring unit), which, in turn, de-
termines the linear response of the system. Therefore, even
in the absence of disorder, quantum mechanics does signif-
icantly aid in intra- and inter-ring transfer in purple bacte-
ria. Here, we purposefully neglected these effects in order
to unambiguously demonstrate the benefits of quantum me-
chanics in overcoming various types of disorder. Since our
model consists of dipoles all oriented normal to the plane of
the ring, a similar increase in oscillator strength will result but
with the added advantage that inter-ring transport is indepen-
dent of the relative orientation of two rings. This is unlike the
case in LH2 where the dominant transition dipole moments
for the rings break the symmetry of the system. The impli-
cations of these differences will be the subject of a future
publication.

Since the LH2 complex is composed of two rings, not
one it is worthwhile commenting on the possible origins and
benefits of incorporating two rings. Purple non-sulfur bacte-
ria do not utilize a chlorosome antennae complex as do green
sulfur bacteria. The chlorosome consists of many tens to hun-
dreds of thousands of photosynthetic pigments, but is devoid
of a protein matrix. The purpose of the chlorosome is sim-
ply to act as a broadband and large surface area antenna1 to
capture solar flux and direct it to the reaction center through
an intermediate pigment-protein complex called the Fenna-
Mathews-Olson (FMO) complex. The chlorosome funnels en-
ergy to populate one specific state, delocalized about ∼2 sites,
in the FMO complex. In the absence of the chlorosome, the
LH apparatus of purple bacteria utilizes localized and broad-
band antennae—namely, the B800 rings. These antennae may
simply serve the same purpose as the chlorosome, but with
a distributed rather than localized architecture. Energy ab-
sorbed by the B800 ring transfers to the B850 ring in ∼1
ps and is then directed towards a single acceptor site. Due
to the strong intra-chromophore coupling in the B850 ring
combined with static and dynamic disorder in the complex
energy rapidly (<300 fs) localize on a small number of sites.
The origin of whether or not to utilize a chlorosome to be-
gin with, however, is most likely driven by other biological
considerations that have little or nothing to do with energy
transfer.

Finally, we discuss the implications for energy transfer in
biomimetic systems based on these results. The fact that fine-
tuning is not a necessary feature for near-optimal transfer is
promising; using repeating units with nearly degenerate site
energies and nearly equal dephasing rates is significantly eas-
ier than controlling the system-bath interactions at each site.
Depending on the synthetic method used to piece together in-
dividual chromosomes into large units such as rings, the rel-
ative orientation of the transition dipoles may vary. Creating
rings with different properties may be achieved by capital-
izing on relative dipole orientations or by the use of differ-
ent constituent dipoles, number of elements, and local scaf-
fold environment. Fortunately, the exact details of the chro-
mophores are less important than the delocalized states that

they form. Therefore, many candidates may be utilized as
chromophores and trap states (i.e., charge separated species).
Controlling the system-bath interactions – the dephasing rates
in our model – may be achieved by using a polymer host with
varying degree of cross-linking and, therefore, stiffness. Such
constructs are yet to be explored in this context.

CONCLUSION

We have shown that the most salient features of the or-
ganization of the LH apparatus in model bacterium may be
rationalized with a simple quantum model with phenomeno-
logical relaxation without consideration of the high-level de-
tails of LH2 and LH1-RC complex. While this does not in any
way prove that the organization of the LH apparatus arose out
of these principles, it does elucidate a path by which to exploit
quantum mechanical effects in artificial, biomimetic system.
Integrating out the dynamics and considering only the mean
residence time at each site simplifies the analysis consider-
ably, allowing us to focus on the basic physics. By utilizing
an optimization scheme, we have shown that rings are ideal
structures by which to transfer energy efficiently for several
reasons: (1) the high symmetry allows transfer in any direc-
tion, which is critical when the location of the trap (e.g., RC)
is not known a priori, (2) the ring essentially acts to make the
chromophore larger, increasing robustness to disorder among
complexes, and (3) filling in the interior of the structure acts
to waste precious biochemical resources by spending time at
sites that do not participate in efficient transfer across space;
hence, a void inside the structure is ideal. Taken together,
these features uniquely define a ring. We have also shown
that a composite of rings in a staggered or packed configu-
ration is more robust to spatial disorder as it avoids the like-
lihood of breaks that are the rate-limiting step in the transfer
process. We demonstrate that while our optimization schemes
may give the lowest transfer time, the system need not be
fine-tuned to reach a comparable transfer time. This obser-
vation makes designing artificial photosynthetic complexes
much more promising than if fine-tuning was necessary to
achieve high quantum efficiency. Nature’s strategy to utilize
repeating units of identical chromophores and place them in a
single protein host is advantageous from a biological as well
as physical point-of-view. Finally, we showed that quantum
mechanical effects, at least based on this simplified model in
which quantum coherence, changes in oscillator strength, and
pathway interference are effectively ignored, does not nec-
essarily aid in transfer efficiency. Rather, it increases the ro-
bustness of the system to a fixed value of the dephasing and
trap rates. Natural systems cannot dynamically tune these pa-
rameters in response to changes in energetic disorder since
they are inherent to the pigment-protein structure. From a bi-
ological point-of-view, robustness is oftentimes more impor-
tant than overall efficiency, especially when the decay to the
ground state is much slower than the time scale of transfer.
In this work, we demonstrate that general features of organi-
zation may be more important than the fine details, which is
very promising in terms of designing artificial photosynthetic
analogs.
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APPENDIX: THEORY APPENDIX

Construction of K:

Knm.jm = −iVn,j , (A1)

Knm.nj = iVj,m, (A2)

Knm.nm = −�∗
nm + i�nm + 1

2
(ktδn,tr + δm,tr ), (A3)

where the indexes of K are constructed by the one-to-one
mapping 12, 13, . . . , 1N, 21, 23, . . . , 2N, . . . , N1, N2, . . . ,
(N − 1)N → 1, 2, . . . , N2 − N.

Vij is electrostatic coupling between sites i and j,

Vij = e2

|rij |3 (μi · μj − 3(μi · n)(μj · n)), (A4)

where |rij| = |ri − rj| and n = (ri − rj)/|rij|.
Construction of B:

Vij = e2

|rij |3 (μi · μj − 3(μi · n)(μj · n)).

Let B′ be an (N − 1) x (N2 − N) matrix, defined as
follows:

B =

⎡
⎢⎢⎣

V12 · · · V1,N2−N

...
. . .

...

V12 · · · V1,N2−N

⎤
⎥⎥⎦ , (A5)

B is constructed by retaining only the elements, nm, of the ith
row of B′ in which either n = i or m = i. In the former case,
the sign of the nm element is “+”, while in the latter it is “−”.
All other elements are set to zero.

Expression for τ tr:
From (2), the expression for ρ̇tr contains an additional

term kt ρ̇tr . Therefore, after time integration and assuming that
all the excitation eventually reaches the trap, we get 1 = ktτ tr.
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