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Abstract

Remote detection nuclear magnetic resonance and magnetic resonance imaging can be used to study fluid flow and dispersion in a porous

medium from a purely Eulerian point of view (i.e., in a laboratory frame of reference). Information about fluid displacement is obtained on a

macroscopic scale in a long-time regime, while local velocity distributions are averaged out. It is shown how these experiments can be

described using the common flow propagator formalism and how experimental data can be analyzed to obtain effective porosity, flow

velocity inside the porous medium, fluid dispersion and flow tracing of fluid.
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Remote detection nuclear magnetic resonance (NMR)

and magnetic resonance imaging (MRI) denominate a

magnetic resonance experiment where encoding and detec-

tion are spatially and temporally separated, thereby facili-

tating individual optimization of both [1]. During encoding,

information about a sample of interest is transferred onto the

longitudinal spin magnetization Mz of a fluid, which acts as

a bspin sensor.Q This fluid is then relocated to a detector,

where its Mz is read out. The sample can be a stationary

porous object, the fluid itself as it passes through an object

or both at the same time. Encoding is performed point by

point and can comprise any pulse sequence that is able to

transfer the desired information onto the spin sensor.

Detection can be performed with any method or device

capable of sensitively measuring the longitudinal spin

magnetization of the fluid; for example, an inductive

detector [1] at high magnetic field, a magnetometer [2] that

allows detection time constants up to the longitudinal

relaxation time T1 of the fluid magnetization or a device

that is specifically designed to record only the spin
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magnetization of the fluid, such as spin-exchange optical

detection for hyperpolarized noble gases [3].

Since only one phase component of transverse magneti-

zation can be encoded at a time, a two-step phase cycle is

necessary to record a complex data point. Let us assume an

arbitrary encoding sequence ending with a p/2 storage pulse

on the fluid spins to transfer precessing transverse magne-

tization into longitudinal magnetization and to transfer the

remaining longitudinal magnetization into transverse mag-

netization, which dephases until the fluid reaches the

detector. Fluid magnetization immediately before the storage

pulse shall beM+(t1
�)=M(t1)exp(ih), where t1 is the duration

of the encoding sequence, M(t1) is the amplitude of

transverse magnetization and h is its phase. A �y pulse

stores the x component of M+ as longitudinal magnetization,

and one obtains Mz(t1
+)=M(t1)cos(h) after the storage pulse.

The y component of M+ is obtained with the storage pulse

shifted by 908. The remotely measured signal is proportional

to the longitudinal magnetization Mz
R of the fluid in the

detection volume. To calculate Mz
R, multiple additional

factors have to be taken into account. If only a fraction

~ b1 of the fluid inside the detection volume was encoded,

unencoded fluid with magnetization M0V adds a baseline to

the signal, causing a peak at the center of the encoded

spectrum or image in an experiment with Fourier encoding.

Due to the relaxation of the fluid towards thermal equilib-

rium M0, remote signals get scaled by a factor kV1. In the
aging 25 (2007) 449–452



Table 1

Phase cycle for remote NMR experiments

Step Storage Mz(t1
+) Weight Mz

R(t1)�weight factor
1 �y M(t1)cos(h) 1 k(fM(t1)cos(h)+(1�f)M0V)
2 x M(t1)sin(h) i ik(fM(t1)sin(h)+(1�f)M0V)
3 y �M(t1)cos(h) �1 k(fM(t1)cos(h)�(1�f)M0V)
4 �x �M(t1)sin(h) �i ik(fM(t1)sin(h)�(1�f)M0V)

The first two steps recover the complex signal and allow frequency

discrimination along an encoded dimension. The subsequent two steps

remove the baseline caused by the unencoded fluid in the detector.M0VHM0

was assumed, but the phase cycle also works if M0 cannot be neglected.

Using a weight factor for recorded data instead of cycling the detection pulse

phase makes this scheme suitable not only for inductive detectors but also for

any other detector capable of measuring Mz of the encoded fluid.

Fig. 1. Studying flow in a Bentheimer sandstone with remote detection MRI

[6]. For analysis, a slice along the axis of the cylindrical sample was used

from a data set that was recorded with three-dimensional phase encoding.

(A) Visualizing fluid displacement by plotting the fluid location at time tTOF
before it reaches the detector. The sample profile and the inlet and outlet are

outlined by a black line. (B) Plot of the tTOF for the fluid that was tagged

along the axis of the cylindrical sample. The slope of the ridge represents

the longitudinal flow velocity of the fluid inside the rock. (C) Location of

tA(r), determined as the center of the Gaussian distribution that was fitted to

the dispersion curve of each voxel.
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case of a thermally polarized fluid where M0V=M0, this adds

another contribution to the baseline, while for hyperpolar-

ized fluids with M0VHM0, relaxation reduces both the

intensity of the baseline and the signal. Finally, one obtains

MR
z t1ð Þ ¼ k fMz tþ1

� �
þ 1� fð ÞM0V

� �
þ 1� kð ÞM0: ð1Þ

Note that for prepolarized fluids with negligible equilibrium

polarization, not the time between encoding and detection

but the time between inflow of the fluid into a porous

medium and detection determines signal damping. For

homogeneous porous media without multiple distinguish-

able flow paths, k does not depend on the encoding location

and is constant [4]. In contrast, with direct detection using

the same coil as for encoding, the time between inflow and

detection is location dependent, and a spatially dependent

signal correction must be performed [5]. On the other hand,

with a fluid that is Boltzmann-polarized inside the porous

medium, remote detection requires signal correction, while

direct detection does not.

If the flow is steady and if the flow rate is stable, the

baseline does not change significantly for different encoding

steps. It can be identified once and then subtracted during

data processing. Another possibility is to add two more

steps to the phase cycle with inverted phase of the storage

pulse. This changes the sign of encoded information, while

the baseline remains constant. Subtracting this second cycle

from the first doubles the signal and removes the baseline

(Table 1). The weighted sum of the signals from all four

steps is proportional to

S t1ð Þ~2fkM t1ð Þ cos hð Þ þ isin hð Þ½ � ¼ 2fkMþ t�1
� �

: ð2Þ

If the flow is not steady, phase cycling becomes more error-

prone as the fraction of the unencoded fluid in the detector

varies. For rapidly fluctuating or pulsating flow, as well as

for the flow of multiple immiscible phases or in the presence

of bubbles, the phase cycle may fail entirely.

The inherently present fluid flow in experiments with

remote detection can be studied itself by time-resolved

recording of the arrival of the encoded fluid at the detector

[6], requiring a detector with an active volume Vd that is

smaller than the encoded fluid volume. With inductive
detection using a second coil, the time of flight (TOF) of the

encoded fluid can be measured stroboscopically by applying

a train of detection pulses, followed by the recording of the

free induction decay after each pulse. The TOF can then be

correlated with an encoded property, be it an image [6], a

spectrum [7] or any other quantity that can be encoded in an

NMR experiment. In the case of image encoding, a series of

partial images is obtained, each showing a snapshot of the

location of the detected fluid during encoding. Fig. 1A

shows gas flow through a porous Bentheimer sandstone

using hyperpolarized 129Xe as the target nucleus. This

experiment is equivalent to the established experiment of

measuring a breakthrough curve of a tracer injected at one

end of a column or porous sample to study hydrodynamic

dispersion [8]. The magnetic resonance version’s advantage

is that encoding is much more flexible. Using field

gradients, the fluid inside the sample can be addressed

noninvasively with spatial selectivity, allowing one to

extract the dispersion curve individually for arbitrary

binjectionQ locations. In addition, spins are truly ideal tracers
(i.e., manipulating them does not affect the liquid’s

properties). On the downside, the magnetic resonance

experiment requires the detection to be performed on a

timescale on the order of T1 of the sensor spins. Admixing a

component with a long T1 to the fluid of interest can extend

the available timescale, but may also alter the fluid

properties such as viscosity or density, and the diffusivity

may be changed because a different species is observed.



Fig. 2. Dispersion in a remote MRI experiment. The same data set as for

Fig. 1 was used. (A) Combined effect of flow and dispersion on fluid

displacement for different tTOF values. The signal is shown as a function of

encoding location along the axis of the cylindrical sample. The higher

signal intensity for the curve with the shortest tTOF is due to the higher

porosity of the outlet volume compared with the rock sample. (B)

Dispersion of the fluid for different encoding locations along the axis of

the sample in the time domain. (C) Dispersion visualized as the maximum

probability of finding fluid from a particular encoding location in the

detector. (D) Dispersion visualized as the FWHH of TOF data, obtained by

fitting a Gaussian distribution. (E) Effective porosity in a cross-section

through the sample, showing two spots of reduced porosity on the axis.
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When performing TOF experiments with spatially

selective encoding, it is important that none of the encoded

fluid passes the detector without being read out; otherwise,

spin density gets weighted unevenly across the sample. The

signal in a TOF experiment with imaging encoding,

assuming the use of the abovementioned four-step phase

cycle, can be described as:

S r; tTOFð Þ ¼ S0

Vd

Z

detector

drd

Z

voxel

drVq rVð ÞPS rd; tTOFjrV; 0ð Þ: ð3Þ

S0 is the signal per unit quantity of fully encoded spins, r

denotes the center of a voxel inside the encoding coil (with

rV being a volume element inside this voxel), rd is a volume

element inside the detector, q is the spin density of the fluid,

tTOF is the time between encoding and detection, and

PS(rd,tTOF|rV,0) is the conditional probability or propagator

that a spin residing at rV during the encoding step (which is

assumed to be negligibly short compared to tTOF) is in the

detector at time tTOF. In this experiment, immobile fluid

located in isolated pores does not contribute to the signal

since it never reaches the detector.

Remote detection takes a purely Eulerian view of flow

and dispersion [9]. One does not follow the displacement of

spins from an initial location such as in the Lagrangian point

of view, but spins are being tagged in one location and

observed as they arrive at another predefined location in an

external laboratory coordinate system. This strictly Eulerian

view distinguishes this method from most of the established
pulsed gradient spin-echo (PGSE) techniques to study flow

and dispersion, and is the reason that the two techniques are

largely complementary. Remote detection measures disper-

sion in a long-time limit, with the velocity of different fluid

elements averaged out, thereby probing the influence of

local variations of material properties on macroscopic fluid

flow. PGSE methods, on the other hand, measure local

displacement or velocity distributions directly, which allows

one to draw statistical conclusions about the microscopic

environment around fluid molecules.

Since remote detection characterizes the global flow

field, Eq. (3) can be simplified using an averaged propagator

P rd; tTOFjr; 0ð Þ

¼ 1

N rð Þ

Z

voxel

q rVð ÞPS rd; tTOFjrV; 0ð ÞdrV; ð4Þ

where N(r) is the number of spins in the voxel centered at r.

P(rd,tTOF|r,0) describes the probability of finding a spin

originating within this voxel during encoding at rd at a later

time tTOF. Equivalently, as long as detection is not

performed in a spatially selective manner, the propagator

can also be averaged over the active volume of the detector:

P̄ðr; tTOFÞ ¼
1

Vd

Z

detector

P rd; tTOFjr; 0ð Þdrd: ð5Þ

Now, Eq. (3) can be rewritten as:

S r; tTOFð Þ ¼ S0N rð ÞP̄ðr; tTOFÞ: ð6Þ

P̄ (r,tTOF), the probability for the fluid encoded at voxel r to

be in the detection volume at tTOF, is the quantity that is

directly accessible in the TOF dimension. If we make

somewhat idealized assumptions that no fluid passes the

detector without being read out, that all fluid passing the

detector is being read out unweighted (i.e., the detector is

equally sensitive across the whole detection volume and the

signal is not influenced by some of the fluid being closer to

the detector outlet when a detection pulse is applied) and

that there is no correlation between encoding and detection

location (complete mixing of the fluid at the outlet of the

encoding volume), we can further analyze Eq. (6) using:

X
n

P
�

r; t
nð Þ
TOF

�
¼ 1:

�
ð7Þ

n indicates the nth step of a stroboscopic detection. The

signal of this nth detection step depends on the fraction of

the encoded fluid entering the detection volume subsequent

to the (n�1)th step. In a nonideal experiment, the left-hand

side of Eq. (7) may be smaller than 1 if not all the encoded

fluid leaves through the detector within the detection time

(e.g., if pores that are poorly connected to the flow field are

present, which would require a disproportionately long

detection time). Eq. (7) allows the separation of dispersion

and spin density information, which is necessary to model
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and interpret dispersion inside the porous medium. The

simplest method used to visualize dispersion is a one-

dimensional plot of P
�
(r,tTOF) for selected voxels or for a

specific tTOF, as shown in Fig. 2A and B for dispersion

along the spatial and time domains, respectively. One has to

be careful when plotting dispersion in a two-dimensional

plot since a broader dispersion pattern usually also means a

lower maximum of P
�

along tTOF. Contour plots tend to

suppress this broadening, as shown in Fig. 1B, while this

representation works well in displaying fluid displacement.

To visualize more than one encoding dimension, param-

eters representing dispersion in a meaningful way are

required, such as the full width at half height (FWHH) of

P
�
(tTOF). For a symmetric dispersion pattern, the maximum of

P
�
(tTOF) is related to the FWHH. As an example, Fig. 2C

shows max(P
�
(r))=max(S(r,tTOF))/

P
nS(r,tTOF

(n) ), and Fig. 2D

shows the FWHH of P
�
(r,tTOF) of gas flow through the rock.

The two patterns are similar, indicating that the dispersion is

relatively symmetric around its maximum.

The effective porosity /e, the volume fraction of the pore

space that is fully interconnected and contributes to fluid

flow, is a parameter often used to characterize flow in porous

media [5,10]. By assuming that the spin density in fluid-filled

pores is uniform, knowledge ofN(r) can be used to determine

/e. Since remote detection only registers fluid that leaves the

mediumwithin the total detection time, the localized effective

porosity /e(r) is proportional to the voxel-averaged spin

density of the mobile fluid:

q̃q rð Þ ¼ 1

Vv

Z

voxel

q rVð ÞdrV ¼ N rð Þ
Vv

c

P
n
S
�
r; t

nð Þ
TOF

�
S0Vv

: ð8Þ

Vv is the volume of an encoded voxel. For the rock

example, q˜ (r) is shown in Fig. 2E. Effective porosity can

be obtained as /e(r)= q̃(r)/q0, with q0 being the bulk spin

density of the fluid.

A different definition of effective porosity links the

specific discharge q=Q/A with the mean velocity v(r) of the

fluid along the flow direction:

/e rð Þ ¼ q

v rð Þ : ð9Þ

Q is the volumetric fluid flow rate and A is the cross-

sectional area of the porous sample. v(r) can be determined

in a TOF experiment from the distance Dz between two

neighboring voxels along the flow direction, divided by the

difference of the TOF between the two locations (Fig. 1B).

The simplest way to determine this TOF value is to use the
position of the maximum of the dispersion pattern tA(r),

which is accurate if the dispersion pattern in the time domain

is symmetric. Plotting tA(r) gives a qualitative estimate of the

homogeneity of flow in the porous medium (Fig. 1C).

All examples were obtained from one data set, illustrat-

ing the rich information content in experiments with three-

dimensional phase encoding and TOF detection. These

experiments are ideal for use in characterizing fluid flow in

porous media. A more heterogeneous material may require a

more refined model, but the same experimental data would

still be sufficient to perform equivalent analyses.
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